Talk #10: Interpretations

The graph

The graph

The graph

can be "encoded" into a semilattice:

The graph

can be "encoded" into a semilattice:

The graph

can be "encoded" into a semilattice:

Vertices = atoms.

The graph

can be "encoded" into a semilattice:

Vertices = atoms. Edge between $x, y \in V$ represented by a height-2 element that dominates both x and y. This IS a semilattice order, provided ...

The semilattice

The semilattice

can be encoded as follows.

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$,

The semilattice

can be encoded as follows. Given $\langle S;\wedge\rangle,$ choose distinct, recognizable pieces of graph

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques),

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex:

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$,

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge ,

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge ,

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$,

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$,

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$, $M_{\wedge,3}$

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$, $M_{\wedge,3}$ for instances of $s_1 \wedge s_2 = s_3$.

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$, $M_{\wedge,3}$ for instances of $s_1 \wedge s_2 = s_3$. For each cell of the table for \wedge

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$, $M_{\wedge,3}$ for instances of $s_1 \wedge s_2 = s_3$. For each cell of the table for \wedge (e.g. $a \wedge b = c$)

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$, $M_{\wedge,3}$ for instances of $s_1 \wedge s_2 = s_3$. For each cell of the table for \wedge (e.g. $a \wedge b = c$) draw:

The semilattice

can be encoded as follows. Given $\langle S; \wedge \rangle$, choose distinct, recognizable pieces of graph (e.g. large cliques), each with a distinguished vertex: G_s for element $s \in S$, H_{\wedge} for symbol \wedge , $K_{\wedge,1}$, $L_{\wedge,2}$, $M_{\wedge,3}$ for instances of $s_1 \wedge s_2 = s_3$. For each cell of the table for \wedge (e.g. $a \wedge b = c$) draw:

Let K and L be first-order languages.

Let K and L be first-order languages. A scheme for interpreting K in L,

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients:

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

In the next items x and y denote *m*-tuples of variables and z denotes an *n*-tuple of variables.

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

In the next items x and y denote *m*-tuples of variables and z denotes an *n*-tuple of variables.

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

In the next items x and y denote *m*-tuples of variables and z denotes an *n*-tuple of variables.

(2) an *L*-formula $\Delta(\mathbf{x}, \mathbf{z})$

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

In the next items x and y denote *m*-tuples of variables and z denotes an *n*-tuple of variables.

(2) an *L*-formula $\Delta(\mathbf{x}, \mathbf{z})$
Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

In the next items x and y denote *m*-tuples of variables and z denotes an *n*-tuple of variables.

(2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),
- (4) for each k-ary operation symbol F in K,

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),
- (4) for each k-ary operation symbol F in K,

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),
- (4) for each k-ary operation symbol F in K, an L-formula $\varphi_F(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}, \mathbf{z})$, and

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),
- (4) for each k-ary operation symbol F in K, an L-formula $\varphi_F(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}, \mathbf{z})$, and
- (5) for each k-ary relation symbol R in K, an L-formula $\rho_R(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{z})$.

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),
- (4) for each k-ary operation symbol F in K, an L-formula $\varphi_F(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}, \mathbf{z})$, and
- (5) for each k-ary relation symbol R in K, an L-formula $\rho_R(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{z})$.

Let K and L be first-order languages. A scheme for interpreting K in L, $\Sigma = (m, n, \Delta, \varepsilon, \varphi_1, \dots, \rho_1, \dots)$, consists of the following ingredients: (1) integers $m \ge 1, n \ge 0$.

- (2) an L-formula $\Delta(\mathbf{x}, \mathbf{z})$ (called the domain formula),
- (3) an *L*-formula $\varepsilon(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (called the equivalence formula),
- (4) for each k-ary operation symbol F in K, an L-formula $\varphi_F(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}, \mathbf{z})$, and
- (5) for each k-ary relation symbol R in K, an L-formula $\rho_R(\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{z})$.

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ admits the scheme Σ

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ admits the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**".

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

(i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

(i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

- (i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$
- (ii) $F(h(\mathbf{u}_1),\ldots,h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{v},\mathbf{b}).$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

- (i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$
- (ii) $F(h(\mathbf{u}_1),\ldots,h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{v},\mathbf{b}).$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

(i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$ (ii) $F(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}, \mathbf{b}).$ (iii) $R(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) \iff \rho_R(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{b}).$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

(i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$ (ii) $F(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}, \mathbf{b}).$ (iii) $R(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) \iff \rho_R(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{b}).$

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

(i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$ (ii) $F(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}, \mathbf{b}).$ (iii) $R(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) \iff \rho_R(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{b}).$

A class \mathcal{K} of K-structures is **interpretable by parameters**

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

(i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$ (ii) $F(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}, \mathbf{b}).$ (iii) $R(h(\mathbf{u}_1), \dots, h(\mathbf{u}_k)) \iff \rho_B(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{b}).$

A class \mathcal{K} of *K*-structures is **interpretable by parameters** (or **definable by parameters**)

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

- (i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$
- (ii) $F(h(\mathbf{u}_1),\ldots,h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{v},\mathbf{b}).$
- (iii) $R(h(\mathbf{u}_1),\ldots,h(\mathbf{u}_k)) \iff \rho_R(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{b}).$

A class \mathcal{K} of *K*-structures is **interpretable by parameters** (or **definable by parameters**) in a class \mathcal{L} of *L*-structures by a scheme Σ

An *L*-structure **B** and a tuple $\mathbf{b} \in B^n$ **admits** the scheme Σ if "**B** can be used to construct a *K*-structure using parameters **b**". I.e., if there is a *K*-structure $\mathbf{A} = \langle A; F_1, \ldots, R_1, \ldots \rangle$ and a surjective mapping $h : \Delta(B, \mathbf{b}) \to A$ such that

- (i) $h(\mathbf{u}) = h(\mathbf{v}) \iff \varepsilon(\mathbf{u}, \mathbf{v}, \mathbf{b}).$
- (ii) $F(h(\mathbf{u}_1),\ldots,h(\mathbf{u}_k)) = h(\mathbf{v}) \iff \varphi_F(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{v},\mathbf{b}).$
- (iii) $R(h(\mathbf{u}_1),\ldots,h(\mathbf{u}_k)) \iff \rho_R(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{b}).$

A class \mathcal{K} of *K*-structures is **interpretable by parameters** (or **definable by parameters**) in a class \mathcal{L} of *L*-structures by a scheme Σ if for every $\mathbf{A} \in \mathcal{K}$ there is a $\mathbf{B} \in \mathcal{L}$ and $\mathbf{b} \in B^n$ such that \mathbf{A} witnesses that (\mathbf{B}, \mathbf{b}) admits Σ .

Theorem.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type 5.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem.

Theorem. Any class of structures in a finite language is interpretable in the class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.
Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If A is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem.

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem. (Transitivity of interpretations)

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem. (Transitivity of interpretations) If \mathcal{K} is interpretable in \mathcal{L} and \mathcal{L} is interpretable in \mathcal{M} , then \mathcal{K} is interpretable in \mathcal{M} .

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem. (Transitivity of interpretations) If \mathcal{K} is interpretable in \mathcal{L} and \mathcal{L} is interpretable in \mathcal{M} , then \mathcal{K} is interpretable in \mathcal{M} .

Theorem.

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem. (Transitivity of interpretations) If \mathcal{K} is interpretable in \mathcal{L} and \mathcal{L} is interpretable in \mathcal{M} , then \mathcal{K} is interpretable in \mathcal{M} .

Theorem. If \mathcal{V} is a variety and some finite member has a type 4 or type 5 congruence covering,

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem. (Transitivity of interpretations) If \mathcal{K} is interpretable in \mathcal{L} and \mathcal{L} is interpretable in \mathcal{M} , then \mathcal{K} is interpretable in \mathcal{M} .

Theorem. If \mathcal{V} is a variety and some finite member has a type 4 or type 5 congruence covering, then any class of structures in any finite language is interpretable in \mathcal{V} .

Theorem. The class of graphs is interpretable in the variety of semilattices and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **5**. The variety of distributive lattices is interpretable in any variety generated by an $\langle \alpha, \beta \rangle$ -minimal algebra of type **4**.

Theorem. If **A** is a finite algebra and U is a neighborhood of A, then the variety $\mathcal{V}(\mathbf{A}|_U)$ is interpretable in $\mathcal{V}(\mathbf{A})$.

Theorem. (Transitivity of interpretations) If \mathcal{K} is interpretable in \mathcal{L} and \mathcal{L} is interpretable in \mathcal{M} , then \mathcal{K} is interpretable in \mathcal{M} .

Theorem. If \mathcal{V} is a variety and some finite member has a type 4 or type 5 congruence covering, then any class of structures in any finite language is interpretable in \mathcal{V} .

Let L be a finite language.

Let L be a finite language. A class \mathcal{V} of L-structures is **decidable** if the first-order theory of \mathcal{V} computable.

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ ,

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes,

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps,

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question.

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Theorems.

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Theorems. The following classes are decidable:

(Andrzej Ehrenfeucht, 1959)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Theorems. The following classes are decidable:

(Andrzej Ehrenfeucht, 1959)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Theorems. The following classes are decidable:

 (Andrzej Ehrenfeucht, 1959) The class of all monounary algebras is decidable.

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

Theorems. The following classes are decidable:

(Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable.

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable. (Type 2 examples.)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable. (Type 2 examples.)
- (Alfred Tarski, 1940/1949)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable. (Type 2 examples.)
- (Alfred Tarski, 1940/1949)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable. (Type 2 examples.)
- (Alfred Tarski, 1940/1949)
 Every axiomatizable class of Boolean algebras is decidable.

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable. (Type 2 examples.)
- (Alfred Tarski, 1940/1949)
 Every axiomatizable class of Boolean algebras is decidable. (Type 3 examples.)

Let *L* be a finite language. A class \mathcal{V} of *L*-structures is **decidable** if the first-order theory of \mathcal{V} computable. According to the Church-Turing thesis, decidability of \mathcal{V} means that there is a Turing machine that accepts a first-order sentence σ , computes, halts after finitely many steps, and outputs a correct answer to the question:

Question. Is σ true throughout \mathcal{V} ?

- (Andrzej Ehrenfeucht, 1959)
 The class of all monounary algebras is decidable. (Type 1 examples.)
- (Wanda Szmielew, 1955)
 Every axiomatizable class of abelian groups is decidable. (Type 2 examples.)
- (Alfred Tarski, 1940/1949)
 Every axiomatizable class of Boolean algebras is decidable. (Type 3 examples.)

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)
An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

(Michael Rabin, 1965)

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

(Michael Rabin, 1965)

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

(Michael Rabin, 1965)

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

(Michael Rabin, 1965)

Any class that interprets a herditarily undecidable class in a finite language is also herditarily undecidable.

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

(Michael Rabin, 1965)

Any class that interprets a herditarily undecidable class in a finite language is also herditarily undecidable.

Theorem.

An axiomatizable class \mathcal{K} of *L*-structures is **hereditarily undecidable** if every axiomatizable class $\mathcal{K}' \supseteq \mathcal{K}$ is undecidable.

Theorem.

(Igor Lavrov, 1963)

The class of finite graphs is hereditarily undecidable.

(Michael Rabin, 1965)

Any class that interprets a herditarily undecidable class in a finite language is also herditarily undecidable.

Theorem. A locally finite variety that is not hereditarily undecidable must satisfy $typ(\mathcal{V}) \subseteq \{1, 2, 3\}$.

Tails.

Tails. Any variety that admits type **1**

Tails.

Any variety that admits type 1 (or type 5)

Tails.

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails.

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem.

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

If \mathcal{V} is a locally finite variety that admits types 2 or 3 minimal sets with nonempty tails, then \mathcal{V} is hereditarily undecidable.

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

If \mathcal{V} is a locally finite variety that admits types 2 or 3 minimal sets with nonempty tails, then \mathcal{V} is hereditarily undecidable.

The proof is accomplished by interpreting the hereditarily undecidable class of Boolean pairs into \mathcal{V} .

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

If \mathcal{V} is a locally finite variety that admits types 2 or 3 minimal sets with nonempty tails, then \mathcal{V} is hereditarily undecidable.

The proof is accomplished by interpreting the hereditarily undecidable class of Boolean pairs into \mathcal{V} . A **Boolean pair** on X is a structure (B_0, B_1, \subseteq) where

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

If \mathcal{V} is a locally finite variety that admits types 2 or 3 minimal sets with nonempty tails, then \mathcal{V} is hereditarily undecidable.

The proof is accomplished by interpreting the hereditarily undecidable class of Boolean pairs into \mathcal{V} . A **Boolean pair** on X is a structure (B_0, B_1, \subseteq) where

$$\mathcal{P}_{\text{fin}}(X) \le B_0 \le B_1 \le \mathcal{P}(X)$$

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

If \mathcal{V} is a locally finite variety that admits types 2 or 3 minimal sets with nonempty tails, then \mathcal{V} is hereditarily undecidable.

The proof is accomplished by interpreting the hereditarily undecidable class of Boolean pairs into \mathcal{V} . A **Boolean pair** on X is a structure (B_0, B_1, \subseteq) where

$$\mathcal{P}_{fin}(X) \le B_0 \le B_1 \le \mathcal{P}(X)$$

and \subseteq is inclusion.

Any variety that admits type 1 (or type 5) minimal sets must admits instances where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we have this

Theorem. (David Hobby-Ralph McKenzie, 1988)

If \mathcal{V} is a locally finite variety that admits types 2 or 3 minimal sets with nonempty tails, then \mathcal{V} is hereditarily undecidable.

The proof is accomplished by interpreting the hereditarily undecidable class of Boolean pairs into \mathcal{V} . A **Boolean pair** on X is a structure (B_0, B_1, \subseteq) where

$$\mathcal{P}_{\text{fin}}(X) \le B_0 \le B_1 \le \mathcal{P}(X)$$

and \subseteq is inclusion. Burris and McKenzie proved that the class of graphs interprets into the class of Boolean pairs.

The $\langle i, j \rangle$ -transfer principle states that a 3-element congruence interval

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

$$\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$$

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

$$\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$$

does not arise.

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety $\mathcal V$ satisfies the $\langle 2,3 \rangle$ -transfer principle,

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle 2, 3 \rangle$ -transfer principle, assume otherwise.

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle \mathbf{2}, \mathbf{3} \rangle$ -transfer principle, assume otherwise. There must exist $\mathbf{A} \in \mathcal{V}$ with congruences $0 \stackrel{\mathbf{2}}{\prec} \beta \stackrel{\mathbf{3}}{\prec} \gamma$.

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle \mathbf{2}, \mathbf{3} \rangle$ -transfer principle, assume otherwise. There must exist $\mathbf{A} \in \mathcal{V}$ with congruences $0 \stackrel{\mathbf{2}}{\prec} \beta \stackrel{\mathbf{3}}{\prec} \gamma$. Let $U = e(A) \in \operatorname{Min}_{\mathbf{A}}(0,\beta)$ and $V = \{0,1\} \in \operatorname{Min}_{\mathbf{A}}(\beta,\gamma)$.

Transfer principles.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle \mathbf{2}, \mathbf{3} \rangle$ -transfer principle, assume otherwise. There must exist $\mathbf{A} \in \mathcal{V}$ with congruences $0 \stackrel{\mathbf{2}}{\prec} \beta \stackrel{\mathbf{3}}{\prec} \gamma$. Let $U = e(A) \in \operatorname{Min}_{\mathbf{A}}(0,\beta)$ and $V = \{0,1\} \in \operatorname{Min}_{\mathbf{A}}(\beta,\gamma)$. Choose distinct $a, b \in U$ in a $\langle 0, \beta \rangle$ -trace N.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle \mathbf{2}, \mathbf{3} \rangle$ -transfer principle, assume otherwise. There must exist $\mathbf{A} \in \mathcal{V}$ with congruences $0 \stackrel{\mathbf{2}}{\prec} \beta \stackrel{\mathbf{3}}{\prec} \gamma$. Let $U = e(A) \in \operatorname{Min}_{\mathbf{A}}(0,\beta)$ and $V = \{0,1\} \in \operatorname{Min}_{\mathbf{A}}(\beta,\gamma)$. Choose distinct $a, b \in U$ in a $\langle 0, \beta \rangle$ -trace N. By the transfer failure, we must have $(a, b) \in \operatorname{Cg}(0, 1)$,

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle \mathbf{2}, \mathbf{3} \rangle$ -transfer principle, assume otherwise. There must exist $\mathbf{A} \in \mathcal{V}$ with congruences $0 \stackrel{\mathbf{2}}{\prec} \beta \stackrel{\mathbf{3}}{\prec} \gamma$. Let $U = e(A) \in \operatorname{Min}_{\mathbf{A}}(0,\beta)$ and $V = \{0,1\} \in \operatorname{Min}_{\mathbf{A}}(\beta,\gamma)$. Choose distinct $a, b \in U$ in a $\langle 0, \beta \rangle$ -trace N. By the transfer failure, we must have $(a, b) \in \operatorname{Cg}(0, 1)$, so there exists a nonconstant polynomial $f: V \to N$.

The $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principle states that a 3-element congruence interval

 $\alpha \stackrel{\mathbf{i}}{\prec} \beta \stackrel{\mathbf{j}}{\prec} \gamma$

does not arise. If both the $\langle i, j \rangle$ and the $\langle j, i \rangle$ -transfer principle hold for \mathcal{V} , then types i and j are "independent" of each other.

To prove, e.g., that a decidable variety \mathcal{V} satisfies the $\langle \mathbf{2}, \mathbf{3} \rangle$ -transfer principle, assume otherwise. There must exist $\mathbf{A} \in \mathcal{V}$ with congruences $0 \stackrel{\mathbf{2}}{\prec} \beta \stackrel{\mathbf{3}}{\prec} \gamma$. Let $U = e(A) \in \operatorname{Min}_{\mathbf{A}}(0,\beta)$ and $V = \{0,1\} \in \operatorname{Min}_{\mathbf{A}}(\beta,\gamma)$. Choose distinct $a, b \in U$ in a $\langle 0, \beta \rangle$ -trace N. By the transfer failure, we must have $(a, b) \in \operatorname{Cg}(0, 1)$, so there exists a nonconstant polynomial $f : V \to N$. Finish the argument by showing that the class of structures $\langle \overline{V}, \overline{U}, \overline{f} \rangle$ where \overline{V} is a BA, \overline{U} is a vector space, and $\overline{f} : \overline{V} \to \overline{U}$ is nonconstant is herditarily undecidable and interpretable into \mathcal{V} .
Labelled congruence lattices.

Labelled congruence lattices.

If one shows that all $\langle i,j\rangle\text{-transfer principles hold for }i\neq j,$

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

 $\operatorname{Con}(\mathbf{A}) \cong L_{\mathbf{1}} \times L_{\mathbf{2}} \times L_{\mathbf{3}}.$

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

 $\operatorname{Con}(\mathbf{A}) \cong L_1 \times L_2 \times L_3.$

Additional work is needed to prove that this congruence lattice decomposition comes from an algebra decomposition:

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

$$\operatorname{Con}(\mathbf{A}) \cong L_1 \times L_2 \times L_3.$$

Additional work is needed to prove that this congruence lattice decomposition comes from an algebra decomposition:

$$\mathbf{A} = \mathbf{A_1} \times \mathbf{A_2} \times \mathbf{A_3}, \quad \text{typ}\{\mathbf{A_i}\} = \{\mathbf{i}\}.$$

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

 $\operatorname{Con}(\mathbf{A}) \cong L_1 \times L_2 \times L_3.$

Additional work is needed to prove that this congruence lattice decomposition comes from an algebra decomposition:

$$\mathbf{A} = \mathbf{A_1} \times \mathbf{A_2} \times \mathbf{A_3}, \quad \text{typ}\{\mathbf{A_i}\} = \{\mathbf{i}\}.$$

Additional work is needed to prove that locally type-**i** algebras form a subvariety.

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

 $\operatorname{Con}(\mathbf{A}) \cong L_1 \times L_2 \times L_3.$

Additional work is needed to prove that this congruence lattice decomposition comes from an algebra decomposition:

$$\mathbf{A} = \mathbf{A_1} \times \mathbf{A_2} \times \mathbf{A_3}, \quad \text{typ}\{\mathbf{A_i}\} = \{\mathbf{i}\}.$$

Additional work is needed to prove that locally type-**i** algebras form a subvariety. Here one needs to show that a subalgebra of a type-**i** algebra is type **i**.

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

 $\operatorname{Con}(\mathbf{A}) \cong L_1 \times L_2 \times L_3.$

Additional work is needed to prove that this congruence lattice decomposition comes from an algebra decomposition:

$$\mathbf{A} = \mathbf{A_1} \times \mathbf{A_2} \times \mathbf{A_3}, \quad \text{typ}\{\mathbf{A_i}\} = \{\mathbf{i}\}.$$

Additional work is needed to prove that locally type-**i** algebras form a subvariety. Here one needs to show that a subalgebra of a type-**i** algebra is type **i**.

Additional work is needed to prove that the subvarieties are independent.

Labelled congruence lattices.

If one shows that all $\langle \mathbf{i}, \mathbf{j} \rangle$ -transfer principles hold for $\mathbf{i} \neq \mathbf{j}$, then all congruence lattices in \mathcal{V} factor as products of labelled lattices:

 $\operatorname{Con}(\mathbf{A}) \cong L_1 \times L_2 \times L_3.$

Additional work is needed to prove that this congruence lattice decomposition comes from an algebra decomposition:

$$\mathbf{A} = \mathbf{A_1} \times \mathbf{A_2} \times \mathbf{A_3}, \quad \text{typ}\{\mathbf{A_i}\} = \{\mathbf{i}\}.$$

Additional work is needed to prove that locally type-**i** algebras form a subvariety. Here one needs to show that a subalgebra of a type-**i** algebra is type **i**.

Additional work is needed to prove that the subvarieties are independent.

Theorem.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

where

• S is a type-1 strongly abelian variety.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

where

• S is a type-1 strongly abelian variety.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

where

() S is a type-1 strongly abelian variety. (The structure of S is fully known.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

where

S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- **2** \mathcal{A} is a type-**2** affine variety.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- **2** \mathcal{A} is a type-**2** affine variety.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- **2** \mathcal{A} is a type-**2** affine variety. (Much is known.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)
- **(b)** \mathcal{D} is a type-**3** discriminator variety.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)
- **(b)** \mathcal{D} is a type-**3** discriminator variety.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)
- D is a type-3 discriminator variety. (Finitely generated case is fully known.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)
- D is a type-3 discriminator variety. (Finitely generated case is fully known. S = "generalized Boolean algebras".)

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

where

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)
- D is a type-3 discriminator variety. (Finitely generated case is fully known. S = "generalized Boolean algebras".)

Moreover, it is impossible to interpret the class of graphs into any of $\mathcal{S}, \mathcal{A}, \mathcal{D}$.

Theorem. Let \mathcal{V} be a locally finite variety. If it is impossible to interpret the class of graphs into \mathcal{V} , then there is a unique decomposition

 $\mathcal{V}=\mathcal{S}\otimes\mathcal{A}\otimes\mathcal{D}$

where

- S is a type-1 strongly abelian variety. (The structure of S is fully known.
 S = "generalized monounary algebras".)
- ② \mathcal{A} is a type-2 affine variety. (Much is known. \mathcal{A} = "generalized modules over a finite ring".)
- D is a type-3 discriminator variety. (Finitely generated case is fully known. S = "generalized Boolean algebras".)

Moreover, it is impossible to interpret the class of graphs into any of $\mathcal{S}, \mathcal{A}, \mathcal{D}$.