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Semilattices are complex enough to encode graphs

The graph

a

b

c d

can be “encoded” into a semilattice:

0

a b c d

ab ac bc cd dd

Vertices = atoms. Edge between x, y ∈ V represented by a height-2 element that
dominates both x and y. This IS a semilattice order, provided . . .
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Graphs are complex enough to encode semilattices

The semilattice
a b

c

can be encoded as follows. Given ⟨S; ∧⟩, choose distinct, recognizable pieces of
graph (e.g. large cliques), each with a distinguished vertex: Gs for element s ∈ S,
H∧ for symbol ∧, K∧,1, L∧,2, M∧,3 for instances of s1 ∧ s2 = s3. For each cell of
the table for ∧ (e.g. a ∧ b = c) draw:

Ga

K∧,1

H∧

L∧,2

Gb

M∧,3

Gc
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Interpretations, 1

Let K and L be first-order languages. A scheme for interpreting K in L,
Σ = (m, n, ∆, ε, φ1, . . . , ρ1, . . .), consists of the following ingredients:

(1) integers m ≥ 1, n ≥ 0.

In the next items x and y denote m-tuples of variables and z denotes an
n-tuple of variables.

(2) an L-formula ∆(x, z) (called the domain formula),

(3) an L-formula ε(x, y, z) (called the equivalence formula),

(4) for each k-ary operation symbol F in K, an L-formula
φF (x1, . . . , xk, y, z), and

(5) for each k-ary relation symbol R in K, an L-formula ρR(x1, . . . , xk, z).
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Interpretations, 2

An L-structure B and a tuple b ∈ Bn admits the scheme Σ if “B can be used
to construct a K-structure using parameters b”. I.e., if there is a K-structure
A = ⟨A; F1, . . . , R1, . . .⟩ and a surjective mapping h : ∆(B, b) → A such
that

(i) h(u) = h(v) ⇐⇒ ε(u, v, b).

(ii) F (h(u1), . . . , h(uk)) = h(v) ⇐⇒ φF (u1, . . . , uk, v, b).

(iii) R(h(u1), . . . , h(uk)) ⇐⇒ ρR(u1, . . . , uk, b).

A class K of K-structures is interpretable by parameters (or definable by
parameters) in a class L of L-structures by a scheme Σ if for every A ∈ K
there is a B ∈ L and b ∈ Bn such that A witnesses that (B, b) admits Σ.
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Some theorems

Theorem. Any class of structures in a finite language is interpretable in the
class of graphs. (Copy the idea for interpreting semilattices into graphs.)

Theorem. The class of graphs is interpretable in the variety of semilattices
and also the variety of distributive lattices.

Theorem. The variety of semilattices is interpretable in any variety generated
by an ⟨α, β⟩-minimal algebra of type 5. The variety of distributive lattices is
interpretable in any variety generated by an ⟨α, β⟩-minimal algebra of type 4.

Theorem. If A is a finite algebra and U is a neighborhood of A, then the
variety V(A|U ) is interpretable in V(A).

Theorem. (Transitivity of interpretations) If K is interpretable in L and L is
interpretable in M, then K is interpretable in M.

Theorem. If V is a variety and some finite member has a type 4 or type 5
congruence covering, then any class of structures in any finite language is
interpretable in V .
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Decidable varieties

Let L be a finite language. A class V of L-structures is decidable if the
first-order theory of V computable. According to the Church-Turing thesis,
decidability of V means that there is a Turing machine that accepts a
first-order sentence σ, computes, halts after finitely many steps, and outputs a
correct answer to the question:

Question. Is σ true throughout V?

Theorems. The following classes are decidable:

1 (Andrzej Ehrenfeucht, 1959)
The class of all monounary algebras is decidable. (Type 1 examples.)

2 (Wanda Szmielew, 1955)
Every axiomatizable class of abelian groups is decidable. (Type 2
examples.)

3 (Alfred Tarski, 1940/1949)
Every axiomatizable class of Boolean algebras is decidable. (Type 3
examples.)
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Hereditary undecidability

An axiomatizable class K of L-structures is hereditarily undecidable if
every axiomatizable class K′ ⊇ K is undecidable.

Theorem.

1 (Igor Lavrov, 1963)
The class of finite graphs is hereditarily undecidable.

2 (Michael Rabin, 1965)
Any class that interprets a herditarily undecidable class in a finite
language is also herditarily undecidable.

Theorem. A locally finite variety that is not hereditarily undecidable must
satisfy typ(V) ⊆ {1, 2, 3}.
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Local structure in decidable varieties, 1

Tails.
Any variety that admits type 1 (or type 5) minimal sets must admits instances
where the minimal sets of type 1 (or 5) have nonempty tails. Nevertheless, we
have this

Theorem. (David Hobby-Ralph McKenzie, 1988)
If V is a locally finite variety that admits types 2 or 3 minimal sets with
nonempty tails, then V is hereditarily undecidable.

The proof is accomplished by interpreting the hereditarily undecidable class
of Boolean pairs into V . A Boolean pair on X is a structure (B0, B1, ⊆)
where

Pfin(X) ≤ B0 ≤ B1 ≤ P(X)

and ⊆ is inclusion. Burris and McKenzie proved that the class of graphs
interprets into the class of Boolean pairs.
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Local structure in decidable varieties, 2

Transfer principles.
The ⟨i, j⟩-transfer principle states that a 3-element congruence interval

α
i
≺ β

j
≺ γ

does not arise. If both the ⟨i, j⟩ and the ⟨j, i⟩-transfer principle hold for V ,
then types i and j are “independent” of each other.

To prove, e.g., that a decidable variety V satisfies the ⟨2, 3⟩-transfer principle,

assume otherwise. There must exist A ∈ V with congruences 0
2
≺ β

3
≺ γ. Let

U = e(A) ∈ MinA(0, β) and V = {0, 1} ∈ MinA(β, γ). Choose distinct
a, b ∈ U in a ⟨0, β⟩-trace N . By the transfer failure, we must have
(a, b) ∈ Cg(0, 1), so there exists a nonconstant polynomial f : V → N .
Finish the argument by showing that the class of structures ⟨V , U, f⟩ where V
is a BA, U is a vector space, and f : V → U is nonconstant is herditarily
undecidable and interpretable into V .
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Local structure in decidable varieties, 3

Labelled congruence lattices.
If one shows that all ⟨i, j⟩-transfer principles hold for i ̸= j, then all
congruence lattices in V factor as products of labelled lattices:

Con(A) ∼= L1 × L2 × L3.

Additional work is needed to prove that this congruence lattice decomposition
comes from an algebra decomposition:

A = A1 × A2 × A3, typ{Ai} = {i}.

Additional work is needed to prove that locally type-i algebras form a
subvariety. Here one needs to show that a subalgebra of a type-i algebra is
type i.
Additional work is needed to prove that the subvarieties are independent.
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Local structure in decidable varieties, 4

Theorem. Let V be a locally finite variety. If it is impossible to interpret the
class of graphs into V , then there is a unique decomposition

V = S ⊗ A ⊗ D

where

1 S is a type-1 strongly abelian variety. (The structure of S is fully known.
S = “generalized monounary algebras”.)

2 A is a type-2 affine variety. (Much is known. A = “generalized modules
over a finite ring”.)

3 D is a type-3 discriminator variety. (Finitely generated case is fully
known. S = “generalized Boolean algebras”.)

Moreover, it is impossible to interpret the class of graphs into any of S, A, D.
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