The first and second Stiefel-Whitney classes; orientation and spin structure

Robert Hines

December 6, 2017

Classifying spaces and universal bundles

Theorem 1. Given a topological group G, there is a space BG and a principal G-bundle EG such that for any space B (homotopy equivalent to a CW-complex), the principal G-bundles on B are in bijection with homotopy classes of maps $f : B \to BG$ via pullback. I.e., given a principal G-bundle $E \to B$, there exists a map $f : B \to BG$ such that $f^*EG \cong E$ and $f^*EG \cong g^*EG$ if and only if f and g are homotopy equivalent.

For G = O(n), we can take $BG = Gr_n(\mathbb{R}^\infty)$, a limit of the Grassmann manifolds $Gr_n(\mathbb{R}^k)$ of *n*-planes in \mathbb{R}^k . Above this we have $EG = V_n(\mathbb{R}^\infty)$, a limit of the Stiefel manifolds $V_n(\mathbb{R}^k)$ of orthogonal *n*-frames in \mathbb{R}^k . The map $EG \to BG$ is given by forgetting the framing. The fiber is clearly O(n).

Stiefel-Whitney classes

Vaguely, characteristic classes are cohomology classes associated to vector bundles (functorially) over a space B. We will be concerned with the **Stiefel-Whitney** classes in $H^*(B; \mathbb{F}_2)$ associated to real vector bundles over B. These are mod 2 reductions of obstructions to finding (n-i+1) linearly independent sections of an *n*-dimensional vector bundle over the *i* skeleton of B.

Theorem 2 ([M], Chapter 23). There are characteristic classes $w_i(\xi) \in H^i(B; \mathbb{F}_2)$ associated to an n-dimensional real vector bundle $\xi : E \to B$ that satisfy and are uniquely determined by

- $w_0(\xi) = 1$ and $w_i(\xi) = 0$ for $i > \dim \xi$,
- $w_i(\xi \oplus \epsilon) = w_i(\xi)$ where ϵ is the trivial line bundle $\mathbb{R} \times B$,
- $w_1(\gamma_1) \neq 0$ where γ_1 is the universal line bundle over \mathbb{RP}^{∞} ,
- $w_i(\xi \oplus \zeta) = \sum_{j=0}^i w_j(\xi) \cup w_{i-j}(\zeta).$

Every \mathbb{F}_2 characteristic class for n-dimensional real vector bundles can be written as a polynomial in $\mathbb{F}_2[w_1, \ldots, w_n]$.

One can view these as coming from "universal" Stiefel-Whitney classes in $H^*(BO(n); \mathbb{F}_2)$

Theorem 3 ([M], Chapter 23). There are classes $w_i \in H^i(BO(n); \mathbb{F}_2)$ that satisfy and are uniquely characterized by the following

- $w_0 = 1$ and $w_i = 0$ for i > n,
- $w_1 \neq 0$ for n = 1,
- $i^*(w_i) = w_i$ where $i_n : BO(n) \to BO(n+1)$ is the classifying map for $EO(n) \to BO(n)$,
- $p_{m,n}^*(w_i) = \sum_{j=0}^i w_j \otimes w_{i-j}$ where $p_{m,n} : BO(m) \times BO(n) \to BO(m+n)$ is the classifying map for the product $EBO(m) \times EBO(n) \to BO(m) \times BO(n)$.

The cohomology ring $H^*(BO(n); \mathbb{F}_2)$ is the polynomial ring $\mathbb{F}_2[w_1, \ldots, w_n]$. If $f : B \to BG$ is a classifying map for the bundle $\xi : E \to B$, then $w_i(\xi) = f^*(w_i)$.

The exact sequences associated to fibration

A fibration $\xi : E \to B$ is a surjective map such that satisfies the homotopy lifting property: given a space $Y, f : Y \to E$, and $h : Y \times I \to B$, there exists $\tilde{h} : Y \times I \to E$ making the following diagram commute

If $E \to B$ satisfies the homotopy lifting property for all finite dimensional disks, it is called a *Serre fibration*. A fiber bundle $F \to E \xrightarrow{\xi} B$ is a space E that is locally a product: there exists $B = \bigcup_i U_i$ such that $\xi^{-1}(U_i) \cong U_i \times F$.

Proposition 1. Fiber bundles are Serre fibrations.

Given a Serre fibration $\xi : E \to B$ with $F = \xi^{-1}(b_0)$, we obtain a long exact sequence in homotopy (coming for the long exact sequence for the pair (E, F)). So in particular we get a long exact sequence for the homotopy groups of the spaces in a fiber bundle $F \to E \to B$.

Proposition 2 ([H] Theorem 4.41). If $F \to E \xrightarrow{\xi} B$ is a fiber bundle with $b_0 \in B$ and $x_0 \in \xi^{-1}(b_0) \subseteq F \subseteq E$, there is a long exact sequence

$$\dots \to \pi_{n+1}(B, b_0) \to \pi_n(F, x_0) \to \pi_n(E, x_0) \to \pi_n(B, b_0) \to \pi_{n-1}(F, x_0) \to \dots$$

With some conditions, the Serre spectral sequence (associated to a fibration) gives an exact sequence in cohomology.

Proposition 3 ([Mc] Example 5.D). Let $F \to E \to B$ be a fibration with B path-connected and [the system of local coefficients on B induced by F is simple]. If $H^i(B; R) = 0$, 0 < i < pand $H^j(F; R) = 0$, 0 < j < q, then there is an exact sequence

$$0 \to H^1(B; R) \to H^1(E; R) \to H^1(F; R) \to H^2(B; R) \to \dots$$
$$\to H^{p+q-1}(B; R) \to H^{p+q-1}(E; R) \to H^{p+q-1}(F; R).$$

The topology of O(n) (and a detour through Clifford algebras)

It's easy to see that O(n) has two path components, $\pm SO(n)$. The long exact sequence in homotopy for the fibration

$$SO(n) \to SO(n+1) \to S^n$$

is

$$\dots \to \pi_k S^n \to \pi_k SO(n+1) \to \pi_k SO(n) \to \pi_{k+1} S^n \to \dots$$

For $n \geq 3$, we get isomorphisms $\pi_1 SO(n+1) \cong \pi_1 SO(n)$ since $\pi_1 S^n$ and $\pi_2 S^n$ are trivial. It's also straightforward to see that $\pi_1 SO(3) \cong \mathbb{Z}/(2)$, since $SO(3) \cong \mathbb{RP}^3$. [Think of a rotation as a vector in \mathbb{R}^3 with length in $[-\pi, \pi]$, the length being the angle of rotation, and the vector defining an axis and orientation. The open ball of radius π consists of distinct rotations and and rotating by π and $-\pi$ around the same axis with opposite orientations gives the same rotation, identifying antipodal points of the sphere of radius π . Hence real projective threespace.] Therefore, for $n \geq 3$, $\pi_1 SO(n) \cong \mathbb{Z}/(2)$.

From the above we see that the universal covering space/group of SO(n) is a double cover. This group is known as Spin(n) and can be concretely realized as follows. Let Cl(n) be the Clifford algebra for the quadratic space $(\mathbb{R}^n, q(x) = -\sum_{i=1}^n x_i^2)$. This algebra is 2^n dimensional with basis

$$\{e_I = e_{i_1} \cdot \ldots \cdot e_{i_k} : I = \{i_1, \ldots, i_k\} \subseteq \{1, 2, \ldots, n\}, \ i_1 < i_2 < \ldots < i_k\}$$

and relations generated by

$$e_i^2 = -1, \ e_i e_j + e_j e_i = 0, i \neq j,$$

where $\{e_i\}$ is an orthonormal basis of \mathbb{R}^n . The space $\mathbb{R}^n = \operatorname{span}_{\mathbb{R}}\{e_i\}$ sits in degree one and its non-zero elements are invertible, $x^{-1} = -x/q(x)$. The group Γ generated by vectors acts on $\mathbb{R}^n \subseteq Cl(n)$ via the "twisted adjoint representation"

$$\Gamma \to O(n), \ g \mapsto [v \mapsto gvg'^{-1}],$$

where $': Cl(n) \to Cl(n)$ is the grade involution generated by $e'_i = -e_i$. For $g = x \in \mathbb{R}^n$, it can easily be checked that the map $v \mapsto xvx'^{-1}$ is reflection through the hyperplane perpendicular to x. The group generated by even products of vectors of norm one is Spin(n), fitting into the exact sequence

$$1 \to \pm 1 \to Spin(n) \to SO(n) \to 1.$$

\check{H}^1 and principal bundles

Let B be a topological space, $\mathfrak{U} = \{U_i\}$ an open cover of B, and \mathcal{F} a sheaf of Abelian groups on B.

The **Cech complex** (C^n, d^n) associated to the cover \mathfrak{U} and the sheaf \mathcal{F} is the complex of Abelian groups

$$0 \to \prod_{i} \Gamma(U_i, \mathcal{F}) \xrightarrow{d^0} \prod_{i < j} \Gamma(U_i \cap U_j, \mathcal{F}) \xrightarrow{d^1} \prod_{i < j < k} \Gamma(U_i \cap U_j \cap U_k, \mathcal{F}) \xrightarrow{d^2} \dots$$

with differentials given by the alternating sum of restriction maps

$$(d^{n}\sigma)_{i_{0},i_{1},\ldots,i_{n+1}} = \sum_{k=0}^{n+1} (-1)^{k} \sigma_{i_{1},\ldots,\widehat{i_{k}},\ldots,i_{n+1}}.$$

If G is an Abelian group and $\xi : E \to B$ a principal G-bundle, we can consider its sheaf of sections. If $E = \bigcup_i \xi^{-1}(U_i)$ is a trivialization with isomorphisms $\Gamma(U_i, E) \xrightarrow{\phi_i} \Gamma(U_i, G)$ and transition maps $\phi_j \phi_i^{-1} = g_{ij} : U_i \cap U_j \to G$, then the transition maps g_{ij} satisfy the cocycle condition

$$1 = g_{jk}g_{ki}g_{ij} = \phi_k \phi_j^{-1} \phi_i \phi_k^{-1} \phi_j \phi_i^{-1},$$

i.e. the collection $\{g_{ij}\}$ is a Cech 1-cocycle (in the kernel of d^1). A Cech 1-coboundary $u_j u_i^{-1}$ is just a change of the trivialization, i.e. replacing ϕ_i with $u_i \phi_i$ with $u_i \in \Gamma(U_i, G)$. In other words, a Cech 1-cocycle is the data needed to glue together trivial bundles to form a principal bundle.

If G is not Abelian, most of the Cech complex gets destroyed (the differentials aren't homomorphisms, etc.) but \check{H}^1 still makes sense as a pointed set, defined as the quotient of the 1-cocycles $g_{jk}g_{ik}^{-1}g_{ij}$ modulo the action of 0-cochains induced by $\{g_i\}.\{g_{ij}\}_{ij} = \{g_jg_{ij}g_i^{-1}\}_{ij}$, and this equivalence relation still parameterizes principal bundles.

To summarize, for a space X we have

$$Prin_G(X) \cong \check{H}^1(X;G).$$

Orientation and w_1

Let M be a connected Riemannian *n*-manifold, and let $\xi : E \to M$ be its orthonormal frame bundle, a principal O(n)-bundle. This gives a fibration $O(n) \to E \to M$ and an exact sequence (reduced cohomology)

$$0 \to H^0(M; \mathbb{F}_2) \to H^0(E; \mathbb{F}_2) \to H^0(O(n); \mathbb{F}_2) \xrightarrow{w_1} H^1(M; \mathbb{F}_2).$$

The group H^0 is \mathbb{F}_2^{r-1} where r is the number of connected components. M is connected and O(n) has two components $\pm SO(n)$. There are two possibilities for $H^0(E)$, either 0 or \mathbb{F}_2 . Hence the diagram is

$$0 \to 0 \to \{0 \text{ or } \mathbb{F}_2\} \to \mathbb{F}_2 \xrightarrow{w_1} H^1(M; \mathbb{F}_2).$$

If $H^0(E) = 0$, then M is not orientable (there is no SO(n)-valued section), and if $H^0(E)$ has rank one, then M is orientable. So M is orientable if and only if the connecting homomorphism above (labeled suggestively as w_1) is trivial.

Question: How does this relate to the definition of w_1 given above (or any other definition)?

Spin structures and w_2

Let M be an orientable connected Riemannian *n*-manifold, and let $\xi : E \to M$ be its oriented orthonormal frame bundle, a principal SO(n)-bundle. This gives a fibration $SO(n) \to E \to M$ and an exact sequence

$$0 \xrightarrow{w_1} H^1(M; \mathbb{F}_2) \to H^1(E; \mathbb{F}_2) \to H^1(SO(n); \mathbb{F}_2) \xrightarrow{w_2} H^2(M; \mathbb{F}_2).$$

Note that $H^1(X; G)$ is the space of isomorphism classes of principal G-bundles (clear via Cech cohomology since Cech 1-cocycles give gluing data).

A spin structure on M is a double-cover S of the oriented orthonormal frame bundle E such that the restriction to the fibers over points of M is the spin double cover $Spin(n) \rightarrow SO(n)$. From the above, a spin structure gives an element of $H^1(E; \mathbb{F}_2)$.

The group $H^1(SO(n); \mathbb{F}_2)$ is \mathbb{F}_2 since there are two double covers of SO(n); the trivial double cover and the spin double cover. For a spin structure to exist, the map $H^1(E) \to H^1(SO(n))$ must be surjective, and therefore the connecting homomorphism (suggestively labeled w_2) be zero.

So, spin structures exist if and only if the connecting homorphism is zero, and the set of spin structures is in bijection with the kernel $H^1(M)$.

Question: How does this relate to the definition of w_2 given above (or any other definition)?

Another view

The short exact sequence

$$1 \to \{\pm 1\} \to Spin(n) \to SO(n) \to 1$$

gives an exact sequence in cohomology

$$H^0(M;SO(n)) \xrightarrow{\delta^0} H^1(M;\mathbb{Z}/2) \to H^1(M;Spin(n)) \to H^1(M;SO(n)) \xrightarrow{w_2} H^2(M;\mathbb{Z}/2).$$

The image of the orthnormal frame bundle under w_2 above is the second Stiefel-Whitney class. Also note that different spin structures may be isomorphim as abstract Spin(n)-bundles, the former being parameterized by $H^1(M, \mathbb{Z}/2)$ and the latter by $H^1(M, \mathbb{Z}/2)/\delta^0 H^0(M; SO(n))$.

References

- [H] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.
- [LM] Lawson and Michelsohn, Spin Geometry, Princeton University Press, 1989.
- [M] J. P. May, A Concise Course in Algebraic Topology, Chicago Lectures in Mathematics, The University of Chicago Press, 1999.
- [Mc] John McLeary, User's Guide to Spectral Sequences, Mathematics Lecture Series, Number 12, Publish or Perish, 1985.
- [MS] Milnor and Stasheff, *Characteristic Classes*, Annals of Mathematics Studies, Number 76, Princeton University Press, 1974.