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Classifying spaces and universal bundles

Theorem 1. Given a topological group G, there is a space BG and a principal G-bundle EG
such that for any space B (homotopy equivalent to a CW-complex), the principal G-bundles
on B are in bijection with homotopy classes of maps f : B → BG via pullback. I.e., given
a principal G-bundle E → B, there exists a map f : B → BG such that f∗EG ∼= E and
f∗EG ∼= g∗EG if and only if f and g are homotopy equivalent.

For G = O(n), we can take BG = Grn(R∞), a limit of the Grassmann manifolds Grn(Rk)
of n-planes in Rk. Above this we have EG = Vn(R∞), a limit of the Stiefel manifolds Vn(Rk) of
orthogonal n-frames in Rk. The map EG→ BG is given by forgetting the framing. The fiber
is clearly O(n).

Stiefel-Whitney classes

Vaguely, characteristic classes are cohomology classes associated to vector bundles (functorially)
over a space B. We will be concerned with the Stiefel-Whitney classes in H∗(B;F2) associated
to real vector bundles over B. These are mod 2 reductions of obstructions to finding (n− i+ 1)
linearly independent sections of an n-dimensional vector bundle over the i skeleton of B.

Theorem 2 ([M], Chapter 23). There are characteristic classes wi(ξ) ∈ H i(B;F2) associated
to an n-dimensional real vector bundle ξ : E → B that satisfy and are uniquely determined by

• w0(ξ) = 1 and wi(ξ) = 0 for i > dim ξ,

• wi(ξ ⊕ ε) = wi(ξ) where ε is the trivial line bundle R×B,

• w1(γ1) 6= 0 where γ1 is the universal line bundle over RP∞,

• wi(ξ ⊕ ζ) =
∑i

j=0wj(ξ) ∪ wi−j(ζ).

Every F2 characteristic class for n-dimensional real vector bundles can be written as a polyno-
mial in F2[w1, . . . , wn].

One can view these as coming from “universal” Stiefel-Whitney classes in H∗(BO(n);F2)

Theorem 3 ([M], Chapter 23). There are classes wi ∈ H i(BO(n);F2) that satisfy and are
uniquely characterized by the following
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• w0 = 1 and wi = 0 for i > n,

• w1 6= 0 for n = 1,

• i∗(wi) = wi where in : BO(n)→ BO(n+ 1) is the classifying map for EO(n)→ BO(n),

• p∗m,n(wi) =
∑i

j=0wj⊗wi−j where pm,n : BO(m)×BO(n)→ BO(m+n) is the classifying
map for the product EBO(m)× EBO(n)→ BO(m)×BO(n).

The cohomology ring H∗(BO(n);F2) is the polynomial ring F2[w1, . . . , wn]. If f : B → BG is
a classifying map for the bundle ξ : E → B, then wi(ξ) = f∗(wi).

The exact sequences associated to fibration

A fibration ξ : E → B is a surjective map such that satisfies the homotopy lifting property:
given a space Y , f : Y → E, and h : Y × I → B, there exists h̃ : Y × I → E making the
following diagram commute

Y
f //

i0
��

E

ξ
��

Y × I
h

//

h̃

;;

B

If E → B satisfies the homotopy lifting property for all finite dimensional disks, it is called

a Serre fibration. A fiber bundle F → E
ξ−→ B is a space E that is locally a product: there

exists B = ∪iUi such that ξ−1(Ui) ∼= Ui × F .

Proposition 1. Fiber bundles are Serre fibrations.

Given a Serre fibration ξ : E → B with F = ξ−1(b0), we obtain a long exact sequence in
homotopy (coming for the long exact sequence for the pair (E,F )). So in particular we get a
long exact sequence for the homotopy groups of the spaces in a fiber bundle F → E → B.

Proposition 2 ([H] Theorem 4.41). If F → E
ξ−→ B is a fiber bundle with b0 ∈ B and

x0 ∈ ξ−1(b0) ⊆ F ⊆ E, there is a long exact sequence

. . .→ πn+1(B, b0)→ πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ . . .

With some conditions, the Serre spectral sequence (associated to a fibration) gives an exact
sequence in cohomology.

Proposition 3 ([Mc] Example 5.D). Let F → E → B be a fibration with B path-connected
and [the system of local coefficients on B induced by F is simple]. If H i(B;R) = 0, 0 < i < p
and Hj(F ;R) = 0, 0 < j < q, then there is an exact sequence

0→ H1(B;R)→ H1(E;R)→ H1(F ;R)→ H2(B;R)→ . . .

→ Hp+q−1(B;R)→ Hp+q−1(E;R)→ Hp+q−1(F ;R).
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The topology of O(n) (and a detour through Clifford algebras)

It’s easy to see that O(n) has two path components, ±SO(n). The long exact sequence in
homotopy for the fibration

SO(n)→ SO(n+ 1)→ Sn

is
. . .→ πkS

n → πkSO(n+ 1)→ πkSO(n)→ πk+1S
n → . . .

For n ≥ 3, we get isomorphisms π1SO(n+ 1) ∼= π1SO(n) since π1S
n and π2S

n are trivial. It’s
also straightforward to see that π1SO(3) ∼= Z/(2), since SO(3) ∼= RP3. [Think of a rotation
as a vector in R3 with length in [−π, π], the length being the angle of rotation, and the vector
defining an axis and orientation. The open ball of radius π consists of distinct rotations and
and rotating by π and −π around the same axis with opposite orientations gives the same
rotation, identifying antipodal points of the sphere of radius π. Hence real projective three-
space.] Therefore, for n ≥ 3, π1SO(n) ∼= Z/(2).

From the above we see that the universal covering space/group of SO(n) is a double cover.
This group is known as Spin(n) and can be concretely realized as follows. Let Cl(n) be the
Clifford algebra for the quadratic space (Rn, q(x) = −

∑n
i=1 x

2
i ). This algebra is 2n dimensional

with basis

{eI = ei1 · . . . · eik : I = {i1, . . . , ik} ⊆ {1, 2, . . . , n}, i1 < i2 < . . . < ik}

and relations generated by
e2i = −1, eiej + ejei = 0, i 6= j,

where {ei} is an orthonormal basis of Rn. The space Rn = spanR{ei} sits in degree one and
its non-zero elements are invertible, x−1 = −x/q(x). The group Γ generated by vectors acts on
Rn ⊆ Cl(n) via the “twisted adjoint representation”

Γ→ O(n), g 7→ [v 7→ gvg′−1],

where ′ : Cl(n)→ Cl(n) is the grade involution generated by e′i = −ei. For g = x ∈ Rn, it can
easily be checked that the map v 7→ xvx′−1 is reflection through the hyperplane perpendicular
to x. The group generated by even products of vectors of norm one is Spin(n), fitting into the
exact sequence

1→ ±1→ Spin(n)→ SO(n)→ 1.

Ȟ1 and principal bundles

Let B be a topological space, U = {Ui} an open cover of B, and F a sheaf of Abelian groups
on B.

The Cech complex (Cn, dn)associated to the cover U and the sheaf F is the complex of
Abelian groups

0→
∏
i

Γ(Ui,F)
d0−→

∏
i<j

Γ(Ui ∩ Uj ,F)
d1−→

∏
i<j<k

Γ(Ui ∩ Uj ∩ Uk,F)
d2−→ . . .

with differentials given by the alternating sum of restriction maps

(dnσ)i0,i1,...,in+1 =
n+1∑
k=0

(−1)kσi1,...,îk,...,in+1
.
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If G is an Abelian group and ξ : E → B a principal G-bundle, we can consider its sheaf

of sections. If E = ∪iξ−1(Ui) is a trivialization with isomorphisms Γ(Ui, E)
φi−→ Γ(Ui, G) and

transition maps φjφ
−1
i = gij : Ui ∩ Uj → G, then the transition maps gij satisfy the cocycle

condition
1 = gjkgkigij = φkφ

−1
j φiφ

−1
k φjφ

−1
i ,

i.e. the collection {gij} is a Cech 1-cocycle (in the kernel of d1). A Cech 1-coboundary uju
−1
i

is just a change of the trivialization, i.e. replacing φi with uiφi with ui ∈ Γ(Ui, G). In other
words, a Cech 1-cocycle is the data needed to glue together trivial bundles to form a principal
bundle.

If G is not Abelian, most of the Cech complex gets destroyed (the differentials aren’t ho-
momorphisms, etc.) but Ȟ1 still makes sense as a pointed set, defined as the quotient of the
1-cocycles gjkg

−1
ik gij modulo the action of 0-cochains induced by {gi}·{gij}ij = {gjgijg−1i }ij ,

and this equivalence relation still parameterizes principal bundles.
To summarize, for a space X we have

PrinG(X) ∼= Ȟ1(X;G).

Orientation and w1

Let M be a connected Riemannian n-manifold, and let ξ : E → M be its orthonormal frame
bundle, a principal O(n)-bundle. This gives a fibration O(n)→ E →M and an exact sequence
(reduced cohomology)

0→ H0(M ;F2)→ H0(E;F2)→ H0(O(n);F2)
w1−→ H1(M ;F2).

The group H0 is Fr−12 where r is the number of connected components. M is connected
and O(n) has two components ±SO(n). There are two possibilities for H0(E), either 0 or F2.
Hence the diagram is

0→ 0→ {0 or F2} → F2
w1−→ H1(M ;F2).

If H0(E) = 0, then M is not orientable (there is no SO(n)-valued section), and if H0(E) has
rank one, then M is orientable. So M is orientable if and only if the connecting homomorphism
above (labeled suggestively as w1) is trivial.

Question: How does this relate to the definition of w1 given above (or any other definition)?

Spin structures and w2

Let M be an orientable connected Riemannian n-manifold, and let ξ : E → M be its oriented
orthonormal frame bundle, a principal SO(n)-bundle. This gives a fibration SO(n)→ E →M
and an exact sequence

0
w1−→ H1(M ;F2)→ H1(E;F2)→ H1(SO(n);F2)

w2−→ H2(M ;F2).

Note that H1(X;G) is the space of isomorphism classes of principal G-bundles (clear via Cech
cohomology since Cech 1-cocycles give gluing data).

A spin structure on M is a double-cover S of the oriented orthonormal frame bundle E
such that the restriction to the fibers over points of M is the spin double cover Spin(n) →
SO(n). From the above, a spin structure gives an element of H1(E;F2).
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The group H1(SO(n);F2) is F2 since there are two double covers of SO(n); the trivial double
cover and the spin double cover. For a spin structure to exist, the map H1(E) → H1(SO(n))
must be surjective, and therefore the connecting homomorphism (suggestively labeled w2) be
zero.

So, spin structures exist if and only if the connecting homorphism is zero, and the set of
spin structures is in bijection with the kernel H1(M).

Question: How does this relate to the definition of w2 given above (or any other definition)?

Another view

The short exact sequence

1→ {±1} → Spin(n)→ SO(n)→ 1

gives an exact sequence in cohomology

H0(M ;SO(n))
δ0−→ H1(M ;Z/2)→ H1(M ;Spin(n))→ H1(M ;SO(n))

w2−→ H2(M ;Z/2).

The image of the orthnormal frame bundle under w2 above is the second Stiefel-Whitney class.
Also note that different spin structures may be isomorphim as abstract Spin(n)-bundles, the
former being parameterized by H1(M,Z/2) and the latter by H1(M,Z/2)/δ0H0(M ;SO(n)).
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