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1 Simple Continued Fractions

Every irrational number x ∈ R\Q has a unique representation of the form

x = a0 +
1

a1 + 1
a2+

1
a3+...

= [a0; a1, . . . , an, . . . ], a0 ∈ Z, ai ∈ {1, 2, 3, . . . }i ≥ 1

e.g.

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, . . . ] (random?),

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ] (not random),

γ = [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, . . . ] (random?),

1 +
√

5

2
= [1; 1, 1, 1, 1, 1, . . . ] (not random).

Rationals have two such (finite) representations

x = [a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1].

For rational x, the continued fraction expansion is essentially the euclidean algorithm,
(p, q) 7→ (q, p mod q), where we retain the quotient at each step. For instance

(355, 113)
37→ (113, 16)

77→ (16, 1)
167→ (1, 0)

and

355

113
= 3 +

1

7 + 1
16

.

The ai are obtained by

x0 = x, a0 = bx0c, xi+1 =
1

xi − ai
= [ai+1; ai+2, . . . ], ai+1 = bxi+1c.

If x = [a0; a1, a2, . . . ] then the rational numbers

1



pn
qn

= [a0; a1, . . . , an]

are the rational convergents of x. The convergents satisfy(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · · · ·

(
an 1
1 0

)
,

which is the same as(
pn pn−1
qn qn−1

)
=

(
1 1
0 1

)a0 ( 0 1
1 0

)
· · · · ·

(
1 1
0 1

)an ( 0 1
1 0

)
,

which is the euclidean algorthim; if a = bq + r then(
a
b

)
=

(
q 1
1 0

)(
b
r

)
.

This gives the recurrence relation

pn
qn

=
anpn−1 + pn−2
anqn−1 + qn−2

. (1)

Taking determinants, we have

qnpn−1 − pnqn−1 = (−1)n,
pn−1
qn−1

− pn
qn

=
(−1)n

qnqn−1
(2)

and a little algebra gives

pn−2
qn−2

− pn
qn

=
(−1)n−1an
qnqn−2

.

From this we see that the convergents with n even are increasing and the convergents
with n odd are decreasing, and that each convergent with even n is less than each
convergent with odd n. Hence the convergents with n even increase to some limit x∗ and
the convergents with n odd decrease to some limit x∗ with x∗ ≤ x∗. The limits x∗ and x∗
are equal by (1) (show qn ≥ 2(n−1)/2) and (2), proving the convergence of infinite simple
continued fractions.

Also note

x = lim
n→∞

pn
qn

= a0 +
∞∑
k=0

(−1)k

qkqk+1

and
1

qn+2

≤ |xqn − pn| ≤
1

qn+1

.

One last identity that we will use is

x =
pn + pn−1xn+1

pn + pn−1xn+1



(where xn+1 = [an+1; an+2, . . . ]) which follows from(
pn+k(x)
qn+k(x)

)
=

(
pn(x) pn−1(x)
qn(x) qn−1(x)

)(
pk−1(xn+1) pk−2(xn+1)
qk−1(xn+1) qk−2(xn+1)

)(
1
0

)
after dividing and letting k →∞.

[Fun fact: The limit of the ratio of successive Fibonacci numbers approaches the
golden ratio.]

One reason to consider simple continued fractions are that the convergents are optimal
in the following sense.

Theorem. Let x = [a0; a1, a2, . . . ] ∈ R\Q. If 0 < q ≤ qn then if p/q 6= pn/qn

|qx− p| > |qnx− pn|

In particular ∣∣∣∣x− p

q

∣∣∣∣ > ∣∣∣∣x− pn
qn

∣∣∣∣ .
Conversely, if a/b is such that |a− bx| < |p− qx| for all 0 < q ≤ b, a/b 6= p/q, then a/b
is one of the convergents to x.

Proof. If |qx− p| > |qnx− pn| and 0 < q < qn then dividing by qqn gives

1

q

∣∣∣∣pnqn − x
∣∣∣∣ < 1

qn

∣∣∣∣pq − x
∣∣∣∣ < 1

q

∣∣∣∣pq − x
∣∣∣∣

so that
∣∣∣x− p

q

∣∣∣ > ∣∣∣x− pn
qn

∣∣∣.
To prove the first assertion, note that (because of the alternating nature of the con-

vergents) we have ∣∣∣∣x− pn
qn

∣∣∣∣ =

∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣− ∣∣∣∣pn+1

qn+1

− x
∣∣∣∣

so that ∣∣∣∣x− pn
qn

∣∣∣∣ > 1

qnqn+1

− 1

qn+1qn+2

=
an+2

qnqn+2

and

1

qn+2

< |qnx− pn| <
1

qn+1

.

Hence we may assume that qn−1 < q ≤ qn. If q = qn, then∣∣∣∣pq − pn
qn

∣∣∣∣ ≥ 1

qn
,

∣∣∣∣pnqn − x
∣∣∣∣ ≤ 1

qnqn+1

≤ 1

2qn

and



∣∣∣∣pq − x
∣∣∣∣ =

∣∣∣∣pq − pn
qn

+
pn
qn
− x
∣∣∣∣ ≥ 1

qn
− 1

2qn
=

1

2q

proving |qx− p| > |qnx− pn|.
If qn−1 < q < qn, let (

pn pn−1
qn qn−1

)(
a
b

)
=

(
p
q

)
with a, b ∈ Z. Then q = aqn + bqn−1 < qn and we must have ab < 0. We also know

that pn − qnx and pn−1 − qn−1x are of opposite sign as well, so that a(pn − qnx) and
b(pn−1 − qn−1x) have the same sign. Hence

p− qx = a(pn − qnx) + b(pn−1 − qn−1x)⇒ |p− qx| = |a(pn − qnx)|+ |b(pn−1 − qn−1x)|

and

|p− qx| > |pn−1 − qn−1x| > |pn − qnx|
as desired.
Conversely, let a/b 6= pn/qn for any n be a best approximant as in the statement of

the theorem. If a/b < a0 then

|x− a0| <
∣∣∣x− a

b

∣∣∣ ≤ |bx− a| (b ≥ 1),

a contradiction. Now, either a/b > p1/q1 or there is an n with a/b between pn−1/qn−1
and pn+1/qn+1. In the first case, we again get a contradiction since∣∣∣x− a

b

∣∣∣ > ∣∣∣∣p1q1 − a

b

∣∣∣∣ ≥ 1

bq1

implies |bx − a| > 1/q1 = 1/a1, but |a0 − x| ≤ 1/(q0q1) = 1/a1 and a0 is a better
approximation (with denominator 1). In the second case

pn−1
qn−1

<
a

b
<
pn+1

qn+1

< x or x <
pn+1

qn+1

<
a

b
<
pn−1
qn−1

we have ∣∣∣∣ab − pn−1
qn−1

∣∣∣∣ ≥ 1

bqn−1

and ∣∣∣∣ab − pn−1
qn−1

∣∣∣∣ ≤ ∣∣∣∣pnqn − pn−1
qn−1

∣∣∣∣ =
1

qnqn−1

so that b > qn. On the other hand,∣∣∣x− a

b

∣∣∣ ≥ ∣∣∣∣pn+1

qn+1

− a

b

∣∣∣∣ ≥ 1

bqn+1

so that |bx − a| ≥ 1/qn+1 ≥ |qnx − pn|. This is a contradiction since qn < b and
|bx− a| > |qnx− pn|.



One application of continued fractions is solving the Pell equation, x2 − Dy2 = ±1
(D > 0 squarefree), obtaining fundamental units in real quadratic fields. In particular, if√
D = [a0; a1, . . . , as] (periodic of period s) and p/q = [a0; . . . as−1] then the fundamental

unit is given by
ε = p+ q

√
D, D ≡ 2, 3(4), D ≡ 1(8)

or one of
ε = p+ q

√
D, ε3 = p+ q

√
D

otherwise.
For example, with D = 7 we have

√
7 = [2; 1, 1, 1, 4] so that s = 2, p/q = [2; 1, 1, 1] =

8/3 and ε = 8 + 3
√

7 is a fundamental unit (i.e. (Z[
√

7])× = ±εZ).

2 Ergodic Theory

A measure-preserving system (X,B, µ, T ) is a finite measure space (X,B, µ) equipped
with a measureable T : X → X that is measure-preserving µ(T−1A) = µ(A) for all
A ∈ B. We say the system is ergodic if whenever A ∈ B satisfies A = T−1A, then
µ(A) ∈ {0, µ(X)}.

For (immediate) future use, we note that ergodicity is equivalent to

f ∈ L2, f ◦ T = f ⇒ f is constant a.e..

Some examples:

1. Consider Tb : [0, 1) → [0, 1), Tbx = x + b mod 1. Then Tb preserves lebesgue
measure (Haar measure). If b = p/q is rational, then the system is not ergodic (if
A ⊆ (0, 1/q) then ∪qi=1(A+ i/q) is Tb-invariant). If b is irrational, then Tb is ergodic
since if f(x) =

∑
n ane

2πinx is Tb invariant, then f(x) = f(x+ b) =
∑

n ane
2πibe2πinx

and an(e2πib − 1) = 0 for all n 6= 0. Since b is irrational, this is only possible if
an = 0 for all n 6= 0.

2. Another example on the interval/circle is Tk : [0, 1) → [0, 1), Tkx = kx, k ∈
Z\{0, 1}. This also preserves lebesgue measure (Haar measure). [In general, if
T : G → G is a continuous endomorphism of a compact group, then T preserves
Haar measure µ as follows. Let ν be the pushforward of µ by T , ν(E) = µ(T−1E).
Then

ν(TxE) = µ(T−1(TxE)) = µ(xT−1E) = µ(T−1E) = ν(E).

Because T is surjective, ν is G-invariant and must be Haar measure, ν = µ.] Tk
is ergodic since if f ◦ T = f with f(x) =

∑
n ane

2πinx then for all j we have

f(x) = f(kjx) =
∑

n ane
2πinkjx. Hence an = akjn and letting j → ∞ (Riemann-

Lebesgue:
∫ 1

0
f(x)e2πinxdx → 0) shows that an = 0 for all n 6= 0. Thus f is

constant.

3. One more example. Let I be the incidence matrix of a digraph on n vertices,
and suppose P be a stochastic matrix compatible with I (I(i, j) = 0 ⇒ P (i, j) =



0). Define a measure on the subset X ⊆ {1, . . . , n}N where x = (xi) ∈ X iff
I(xi, xi+1) = 1 for all i. Define a measure µ on the cylinder sets U(y1, . . . , yk) =
{x ∈ X : x1 = y1, . . . , xk = yk} by µ(U(y1, . . . , yk)) = πy1P (y1, y2) . . . P (yk−1, yk)
where π is a stationary distribution (left eigenvector) for P . Then the left shift
T (x0, x1, x2, . . . ) = (x1, x2, . . . ) is measure preserving and T is ergodic iff P is
irreducible.

The big theorem we will be using later is the following.

Theorem (Birkhoff Pointwise Ergodic Theorem, 1931). Let (X,B, µ, T ) be a measure
preserving system. For any integrable f : X → C, the time average

f ∗(x) = lim
N→∞

1

N

N−1∑
n=0

f(T nx)

exists for a.e. x ∈ X. The time average f ∗ is T -invariant, f ∗ ∈ L1, and
∫
fdµ =

∫
f ∗dµ.

If T is ergodic with respect to µ, then the time average is constant and equal to the space
average

f ∗(x) = lim
N→∞

1

N

N−1∑
n=0

f(T nx) =
1

µ(X)

∫
X

fdµ

for a.e. x ∈ X.

As you may imagine, this is a somewhat technical result. We will use the following.

Proposition (Maximal Inequality). Let U : L1(X)→ L1(X) be positive (f ≥ 0⇒ Uf ≥
0) with ‖U‖ ≤ 1 and let f ∈ L1 be real valued. If f0 = 0, fn =

∑n−1
i=0 U

if for n ≥ 1 and
FN(x) = max{fn(x) : 0 ≤ n ≤ N} (pointwise maximum), then∫

{FN>0}
fdµ ≥ 0

for all N .

Proof. We have FN ∈ L1, FN ≥ fn for all n so that UFN ≥ Ufn for all n by positivity.
Hence UFN + f ≥ Ufn + f = fn+1 and therefore

UFN(x) + f(x) ≥ max
1≤n≤N

fn

= max
1≤n≤N

fn when FN(x) ≥ 0

= FN(x).

Thus f ≥ FN − UFN on A = {FN > 0} so that∫
A

f ≥
∫
A

FN −
∫
A

UFN

=

∫
X

FN −
∫
A

UFN since FN = 0 on X\A

≥
∫
X

FN −
∫
X

UFN since FN ≥ 0⇒ UFN ≥ 0

≥ 0 since ‖U‖ ≤ 1.



Corollary. Let (X,B, µ, T ) be a measure preserving system and g ∈ L1 real-valued. If
A ∈ B is T -invariant, then ∫

Bα∩A
gdµ ≥ αµ(Bα ∩ A)

where

Bα =

{
x : sup

n≥1

{
1

n

n−1∑
i=0

g(T ix) > α

}}
Proof. We consider T : A→ A and use the above with Uh = h ◦ T =, f = g − α. Then
we have (in the notation above)

fn(x) =
n−1∑
i=0

(
g(T ix)− α

)
, fn(x) > 0⇐⇒ 1

n

n−1∑
i=0

g(T ix) > α

so that
x ∈ Bα ⇐⇒ x ∈ {FN > 0} for some N, i.e. Bα = ∪N{FN > 0}.

By the maximal inequality, we have∫
Eα

fdµ ≥ 0,

∫
Eα

gdµ ≥ αµ(Eα).

(Proof of the pointwise ergodic theorem). idontwanna

3 Continued Fractions as a Dynamical System

Consider the system

X = [0, 1]\Q, T (x) =

{
1

x

}
:=

1

x
−
⌊

1

x

⌋
.

In terms of the continued fraction expansion x = [a1, a2, . . . ], we have T (x) = [a2, a3, . . . ],
i.e. T is the shift map on NN. Gauss discovered (somehow) the following T -invariant
probability measure (absolutely continuous w.r.t. lebesgue measure)

dµ(x) =
1

log 2

dx

1 + x
.



It’s easy to verify that the Gauss measure is shift invariant. We check this on sets of the
form A = (0, a) (which generate the Borel sigma algebra)

(log 2)µ(T−1(A)) = µ

(∐
n

(
1

n+ a
,

1

n

))

=
∑
n

∫ 1
n

1
n+a

dx

1 + x
=
∑
n

log

(
1 + 1

n

1 + 1
n+a

)
=
∑
n

log(n+ 1)− log n− log(n+ a+ 1) + log(n+ a)

= log(1 + a) + lim
N→∞

log

(
N + 1

N + a+ 1

)
= log(1 + a) =

∫ a

0

dx

1 + x
= (log 2)µ(A).

Fun fact: ∫ 1

0

{
1

x

}
dx =

∑
n

∫ 1/n

1/(n+1)

(
1

x
− n

)
dx

= lim
N→∞

log(N + 1)−
N∑
n=1

1

n+ 1
= 1− γ.

4 Ergodicity of the Gauss Map

There are various proofs of ergodicity of the Gauss map. Perhaps the most interesting
is viewing the Gauss map as a factor of a cross section of the geodesic flow on the unit
tangent bundle of the modular surface H/PSL(2,Z). Another approach (a dynamical
system on a space of quadratic forms) that may have been available to Gauss is outlined
in Keane. For the sake of time here is a direct approach.

Proposition. The measure preserving system

X = [0, 1]\Q, T (x) = {1/x}, dµ =
dx

(1 + x) log 2

is ergodic.

Proof. Consider the cylinder set

I(a1, . . . , an) = {x = [a1, . . . , an, . . . ]}

which is an interval in (0, 1), either

([a1, . . . , an], [a1, . . . , an + 1]) or ([a1, . . . , an + 1], [a1, . . . , an])



depending on whether n is even or odd. We want to show that

µ
(
T−nA ∩ I(a1, . . . , an)

)
� µ(T−nA)µ(I(a1, . . . , an)) (3)

for all Borel sets A, which will imply (since the sets I(a1, . . . , an) generate the topology
on NN) that µ(A ∩ B) � µ(A)µ(B) for all B and any T -invariant A. Applying this to
B = (0, 1)\A gives µ(A) ∈ {0, 1} as desired. To this end, we show (3) for intervals
A = [d, e].

Recall that

x =
pn + pn−1T

nx

pn + pn−1T nx
(4)

so that x ∈ I(a1, . . . , an)∩T−nA if and only if x is as in (4) with T nx ∈ A = [d, e]. Since
T n is monotone on I(a, . . . , an), increasing for n even, decreasing for n odd,

pn + βpn−1
qn + βqn−1

− pn + αpn−1
qn + αqn−1

= (β − α)
qnpn−1 − pnqn−1

(qn + βqn−1)(qn + αqn−1)

= (β − α)
(−1)n

(qn + βqn−1)(qn + αqn−1)
,

I(a1, . . . , an) ∩ T−nA is an interval with endpoints

pn + dpn−1
qn + dqn−1

,
pn + epn−1
qn + eqn−1

and lebesgue measure (as above)

1

(qn + dqn−1)(qn + eqn−1)
.

The lebesgue measure of I(a1, . . . , an) is∣∣∣∣pnqn − pn + pn−1
qn + qn−1

∣∣∣∣ =
1

qn(qn + qn+1)
,

so that
ohgodidontwanna

5 Applications

Direct application of the ergodic theorem gives information about the continued fraction
expansion of almost every number. Here are some examples.



Proposition. For a.e. x = [a1, a2, a3, . . . ] ∈ [0, 1]\Q we have

P(an = k) = lim
N→∞

1

N
|{ai = k, i ≤ N}| = 1

log 2
log

(
(k + 1)2

k(k + 2)

)
,

(1 ∼ 41.56%, 2 ∼ 16.99%, 3 ∼ 9.31%, 4 ∼ 5.89%, etc.)

lim
N→∞

(
N∏
n=1

an

)1/N

=
∏
k

(
(k + 1)2

k(k + 2)

)log k/ log 2

= 2.6854520010...,

lim
N→∞

1

N

∑
n≤N

an =∞

lim
N→∞

1

N
log qN =

π2

12 log 2
,

lim
N→∞

1

N
log

∣∣∣∣x− pN
qN

∣∣∣∣ = − π2

6 log 2
.

Proof. Applying the ergodic theorem to the indicator f = 1(1/(k+1),1/k) gives the fre-
quency/probability that a digit of the continued fraction expansion is given by k:

lim
N→∞

1

N

N−1∑
n=0

f(T n(x)) = lim
N→∞

|{i : ai = k}|
N

=
1

log 2

∫ 1/k

1/(k+1)

dx

1 + x
=

1

log 2
log

(
(k + 1)2

k(k + 2)

)
.

Applying the ergodic theorem to f(x) =
∑

k(log k)1(1/(k+1),1/k) we get

∫
(0,1)

fdµ = lim
N→∞

1

N

N∑
n=1

log an

=
1

log 2

∑
k

∫ 1/k

1/(k+1)

log k

1 + x
dx

=
∑
k

log k

log 2
log

(
(k + 1)2

k(k + 2)

)
so that, after exponentiating, we get

lim
N→∞

(
N∏
n=1

an

)1/N

=
∏
k

(
(k + 1)2

k(k + 2)

)log k/ log 2

= 2.6854520010...

(called Khinchin’s constant, it is unknown if this constant is rational).
Applying the ergodic theorem to fM(x) =

∑
k≤M k1(1/(k+1),1/k), we get



lim
N→∞

1

N

∑
n≤N
an≤M

an =
∑
k≤M

1

log 2

∫ 1/k

1/(k+1)

k

1 + x
dx

=
∑
k≤M

k log

(
(k + 1)2

k(k + 2)

)
=
∑
k≤M

k log

(
1 +

1

k(k + 2)

)
≥
∑
k≤M

1

k + 2
− 1

k(k + 2)2
→∞, M →∞.

With a bit more work we can also obtain results about the rate of convergence
[a1, . . . , an]→ x, namely

1

N
log qN →

π2

12 log 2
,

1

N
log

∣∣∣∣x− pN
qN

∣∣∣∣→ − π2

6 log 2
.

To this end, recall from the first section that

x =
pn + pn−1T

nx

qn + qn−1T nx
,

from which it follows that

T nx = − xqn − pn
xqn−1 − pn−1

,

n−1∏
i=0

T ix = (−1)n(xqn−1 − pn−1) = |xqn−1 − pn−1|,

xqn−1 − pn−1 =
(−1)n+1

qn + qn−1T nx
, |xqn−1 − pn−1| ≥

1

2qn
.

Hence we have

1

2qn
≤ |xqn−1 − pn−1| ≤

1

qn
(or recall

1

qn+1

≤ |xqn−1 − pn−1| ≤
1

qn
from section 1)

and
1

2qn
≤

n−1∏
i=0

T ix ≤ 1

qn
.

Taking logarithms and applying the ergodic theorem gives

lim
n→∞

1

n
log qn = − lim

n→∞

1

n

n−1∑
i=0

log(T ix) = − 1

log 2

∫ 1

0

log x

1 + x
dx,



the last integral being

− 1

log 2

∫ 1

0

log x

1 + x
dx =

1

log 2

∞∑
k=0

(−1)k+1

∫ 1

0

xk log xdx

=
1

log 2

∞∑
k=0

(−1)k+1

xk+1 log x

k + 1

∣∣∣∣∣
1

0

−
∫ 1

0

xk

k + 1
dx


=

1

log 2

∑
k

(−1)k+1

k2
=

ζ(2)

2 log 2
=

π2

12 log 2

since

∑
k odd

1

k2
−
∑
k even

1

k2
=

(
ζ(2)−

∑
k even

1

k2

)
−
∑
k even

1

k2

= ζ(2)− ζ(2)

4
− ζ(2)

4
=
ζ(2)

2
.

Finally, because
1

qnqn+2

≤
∣∣∣∣x− pn

qn

∣∣∣∣ ≤ 1

qnqn+1

(recall ∣∣∣∣x− pn
qn

∣∣∣∣ ≥ ∣∣∣∣pn+2

qn+2

− pn
qn

∣∣∣∣ =
an+2

qn+2qn
≥ 1

qn+2qn

from the first section) we have

− 1

n
log

∣∣∣∣x− pn
qn

∣∣∣∣→ π2

6 log 2

as n→∞.

One last result, on the distribution of the normalized error θn(x) = qn|pn − qnx|.

Theorem. Let θn(x) = q2n

∣∣∣x− pn
qn

∣∣∣. Then for (lebesgue) almost every x ∈ [0, 1]

lim
N→∞

1

N
|{n : θn(x) ≤ z}| = f(z)

where

f(z) =

{
z

log 2
0 ≤ z ≤ 1/2

1−z+log(2z)
log 2

1/2 ≤ z ≤ 1

Proof. This uses mixing properties of an extension of the gauss map. See Hensley and
the references there.
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