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1 Dirichlet Series and The Riemann Zeta Function

Throughout, s = σ + it is a complex variable (following Riemann).

Definition. The Riemann zeta function, ζ(s), is defined by

ζ(s) =
∑
n

1

ns
=
∏
p

(1− p−s)−1

for σ > 1.

Lemma (Summation by Parts). We have

q∑
n=p

anbn =

q−1∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp

where An =
∑

k≤n ak. In particular, if
∑

n≥1 anbn converges and Anbn → 0 as n → ∞
then ∑

n≥1

anbn =
∑
n≥1

An(bn − bn+1).

Another formulation: if a(n) is a funciton on the integers, A(x) =
∑

n≤x a(n), and f is
C1 on [y, x] then∑

y<n≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt



Proof.

q∑
n=p

anbn =

q∑
n=p

(An − An−1)bn =

q∑
n=p

Anbn −
q∑

n=p

An−1bn

=

q∑
n=p

Anbn −
q−1∑

n=p−1

Anbn+1 =

q−1∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp.

For the second forumulation, assume y is not an integer and let N = dye,M = bxc. We
have∫ x

y

A(t)f ′(t)dt =A(N − 1)

∫ N

y

f ′(t)dt+ A(M)

∫ x

M

f ′(t)dt+
M−1∑
n=N

A(n)

∫ n+1

n

f ′(t)dt

=

[
A(N − 1)f(N)− A(M)f(M) +

M−1∑
n=N

A(n)(f(n+ 1)− f(n))

]
+ A(M)f(x)− A(N − 1)f(y)

=−
∑
y<n≤x

a(n)f(n) + A(x)f(x)− A(y)f(y).

If y is an integer, one easily checks that the result still holds.

Yet another version that is useful.

Lemma (Euler-Maclurin Summation). Assume f is C1 on [a, b] and let W (x) = x −
bxc − 1/2. Then

∑
a<n≤b

f(n) =

∫ b

a

(f(x) +W (x)f ′(x))dx+
1

2
(f(b)− f(a)).

Proof. The right-hand side is∫ b

a

f(x)dx+

∫ b

a

xf ′(x)dx−
∫ b

a

bxcf ′(x)dx− 1

2

∫ b

a

f ′(x)dx+
1

2
(f(b)− f(a))

= bf(b)− af(a)−
∫ b

a

bxcf ′(x)dx = bf(b)− af(a)−
b−1∑
n=a

n(f(n+ 1)− f(n))

=
∑
a<n≤b

f(n).

A few lemmas on Dirichlet series (
∑

n ann
−s).

Lemma. If f(s) =
∑

n ann
−s converges for s = s0 then f(s) converges on σ > σ0

(uniformly on compacta).



Proof. We have
∑

n ann
−s =

∑
n ann

−(s−s0)n−s0 . Let Ak(s0) =
∑k

n=1 ann
−s0 and sum the

tail of the series by parts

N∑
n=M

an
ns0

1

ns−s0
=

N−1∑
n=M

An

(
1

ns−s0
− 1

(n+ 1)s−s0

)
− AN
N s−s0

+
AM−1

M s−s0
.

We have ∣∣∣∣ 1

ns−s0
− 1

(n+ 1)s−s0

∣∣∣∣ =

∣∣∣∣(s− s0)

∫ n+1

n

1

xs−s0+1
dx

∣∣∣∣ ≤ |s− s0|
nσ−σ0+1

so that the tails go to zero uniformly.

Lemma. If |AN | = |
∑n

n=1 an| < CNσ0 then f(s) =
∑

n ann
−s converges for σ > σ0.

Proof. Summation by parts again:∣∣∣∣∣
N∑

n=M

ann
−s

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
n=M

An

(
1

ns
− 1

(n+ 1)s

)
+
AN
N s
− AM−1

M s

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=M

s

∫ n+1

n

An
xs
dx+

AN
N s
− AM−1

M s

∣∣∣∣∣
≤ C

(
N∑

n=M

|s|
∫ n+1

n

dx

xσ−σ0+1
+

1

Nσ−σ0
+

(
M − 1

M

)σ0 1

Mσ−σ0

)
which goes to zero.

Proposition. The Riemann zeta function can be continued to σ > 0 with a simple pole
at s = 1, Ress=1 ζ(s) = 1.

Proof.

ζ(s) =
∑
n

1

ns
=
∑
n

n

(
1

ns
− 1

(n+ 1)s

)
=
∑
n

ns

∫ n+1

n

x−s−1dx = s

∫ ∞
1

bxcx−s−1dx

= s

∫ ∞
1

(x− {x})x−s−1dx =
s

s− 1
− s

∫ ∞
1

{x}x−s−1dx

=
1

s− 1
+ 1 + s

∫ ∞
1

{x}x−s−1dx

where the last integral converges for σ > 0.
We can do better by writing

ζ(s) = s

∫ ∞
1

bxcx−s−1dx = s

∫ ∞
1

(x− 1/2− ({x} − 1/2))x−s−1dx

=
s

s− 1
− 1

2
− s

∫ ∞
1

W (x)x−s−1dx

=
s

s− 1
− 1

2
+ s(s+ 1)

∫ ∞
1

(∫ x

1

W (y)dy

)
x−s−2dx



where W (x) = x−bxc−1/2 is the “sawtooth” function. Since
∫ x

1
W (y)dy is bounded

for all x, the last integral converges for σ > −1. This also shows that ζ(0) = −1/2.
[Another way to get this continuation is by considering

ζ(s) = 2ζ(s)− ζ(s) = 2
∞∑
k=1

(2k)−s + 2
∞∑
k=1

(2k − 1)−s − ζ(s)

= 21−sζ(s)−
∞∑
n=1

(−1)nn−s

⇒ ζ(s) =

∑
n(−1)nn−s

21−s − 1

where the sum on the right-hand side converges for σ > 0, clear for s real and Dirichlet
series converge on half-planes.]

Proposition. The Riemann zeta function does not vanish on σ ≥ 1.

Proof. For σ > 1 we have the Euler product, which is non-zero (any convergent product,∏
n(1+an),

∑
n |an| <∞, |an| < 1 is non-zero). Along the line σ = 1, we use a continuity

argument, starting with the identity

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

Taking the logarithm of the Euler product, for σ > 1 we have

< log ζ(s) = <
∑
m,p

1

m
e−m(σ+it) log p =

∑
m,p

1

m
e−σm log p cos(mt log p).

Taking θ = mt log p in the inequality above, multiplying by e−σm log p/m, and summing
over m, p gives

3 log ζ(σ) + 4< log ζ(σ + it) + < log ζ(σ + 2it) ≥ 0,

and exponentiating gives

ζ3(σ)|ζ4(σ + it)ζ(σ + 2it)| ≥ 1.

Now, if ζ(1 + it) = 0, taking limits as σ → 1 above gives a contradiction, the quadruple
zero cancels the triple pole and ζ(1 + 2it) remains bounded. Hence there are no zeros on
σ = 1 as claimed.

2 Primes in Arithmetic Progressions

Proposition. The sum of the reciprocals of the primes diverges,∑
p

1/p =∞



Proof. Taking the logarithm of the Euler product for ζ(s) (s > 1 real) we get

log(ζ(s)) = −
∑
p

log(1− p−s) =
∑
n,p

1

npns

using the power series expansion

− log(1− z) =
∑
n

zn

n
.

The sum over n > 1 converges∑
n,p

1

n
p−ns =

∑
p

p−s +O(1)

since ∑
p, n≥2

1

n
p−ns <

∑
p

p−2

1− p−s
<
∑
n

n−2 <∞.

More specifically, although we don’t need it and the above is merely motivational, we
have

Theorem (Mertens).
∑

p≤x 1/p = C + log log x+O(1/ log x) with C =?

Proof. Let S(x) =
∑

n≤x log n = log(bxc!) = x log x− x+O(log x). Then

S(x) =
∑
lm≤x

Λ(l) =
∑
l≤x

Λ(l)
⌊x
l

⌋
= x

∑
l≤x

Λ(l)

l
+O(ψ(x)).

Since ψ(x) � x (see the prime number theorem section) we have∑
n≤x

Λ(n)

n
= log x+O(1).

Since
∑

p,α≥2 Λ(p)/pα <∞, we have∑
p≤x

log p

p
= log x+O(1).

Now use summation by parts∑
p≤x

1

p
=
∑
p≤x

log p

p

1

log p

=
1

log x

∑
p≤x

log p

p
+

∫ x

2

∑
p≤t

log p
p

t(log t)2
dt

= 1 +O(1/ log x) +

∫ x

2

1

t log t
dt+O

(∫ x

2

1

t(log t)2

)
= C + log(log x) +O(1/ log x)

for some constant C.



Definition. A Dirichlet character to the modulus q, χ : Z → C, is induced by a ho-
momorphism (Z/qZ)× → C× and defined to be zero for (n, q) > 1. They form an
abelian group under pointwise multiplication isomorphic to (Z/qZ)× with identity χ0 (the
principal character) and χ−1 = χ̄. Also note that Dirichlet characters are completely
multiplicative, χ(ab) = χ(a)χ(b).

Lemma (Orthogonality relations).

1

φ(q)

∑
χ

χ(a) =

{
1 a ≡ 1(q)
0 else

1

φ(q)

∑
a∈(Z/qZ)×

χ(a) =

{
1 χ = χ0

0 else

Definition. The Dirichlet L-series associated to a character χ, L(s, χ), is defined by

L(s, χ) =
∑
n

χ(n)

ns
=
∏
p

(1− χ(p)p−s)−1

for σ > 1.

For future reference we note that the series on the left actually converges on σ > 0 for
non-principal χ and that L(s, χ0) can be continued to σ > 0 with a simple pole at s = 1.
Using summation by parts (cf. the section on the Riemann zeta function) we have, for
non-principal χ

∑
n

χ(n)

ns
=
∑
n

(
n∑
k=1

χ(k)

)
(n−s − (n+ 1)−s) = s

∫ ∞
1

(∑
n≤x

χ(n)

)
x−s−1dx

with
∑

n≤x χ(n) ≤ φ(q), whereas for χ0 we have

L(s, χ0) = ζ(s)
∏
p|q

(1− p−s)

and the claim follows from the properties of the Riemann zeta function.

Theorem (Primes in Arithmetic Progressions). For (a, q) = 1 there are infinitely many
primes p such that p ≡ a(q). More precisely, the sum of the reciprocals of such primes

diverges,
∑
p≡a(q)

1/p =∞.

Proof. Taking the logarithm of the Euler product for L(s, χ) gives (similar to the above)

log(L(s, χ)) = −
∑
p

log(1− χ(p)p−s) =
∑
n,p

χ(p)

npns
=
∑
p

χ(p)

ps
+O(1).

Multiplying by χ̄(a)/φ(q) and summing over all characters moduluo q selects primes
congruent to a modulo q (using orthogonality)



1

φ(q)

∑
χ

χ̄(a) log(L(s, χ)) =
∑
p

p−s
∑
χ

χ(pa−1) +O(1) =
∑
p≡a(q)

1

ps
+O(1).

On the left hand side, the term corresponding to the prinipal character diverges. If
L(1, χ) 6= 0 for the non-principal characters (we know that L(1, χ) is well-defined) then
letting s→ 1+ gives the divergence of the sum on the right-hand side,∑

p≡a(q)

1

p
=∞

indicating the existence of infinitely many primes in a given arithmetic progression
a mod q.

To validate the proof above, we must prove the non-vanishing of L(1, χ) for non-
principal characters. Three proofs are provided below.

Theorem (Non-vanishing of L(1, χ)). For a non-principal character χ, we have

L(1, χ) 6= 0.

(Proof 1, de la Vallée Poussin). First note that for s > 1 real, we have

F (s) =
∏
χ

L(s, χ) ≥ 1

since its logarithm is positive

log(F (s)) =
∑
χ,p,n

χ(p)

npns
=

∑
p≡1(q),n

1

npns
> 0.

If L(1, χ) = 0 for a complex character χ 6= χ̄, then L(1, χ̄) = 0 as well. From this we see
that F (s) has a zero at s = 1 (exactly one pole from the principal character, and at least
two zeros from χ, χ̄), a contradiction.

So we need only consider real characters. Given a real character χ with L(1, χ) = 0,
consider the auxiliary function

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)

which is analytic on σ > 1/2 with lims→1/2+ ψ(s) = 0. Consider the product expansion
for ψ

ψ(s) =
∏
p

(1− χ(p)p−s)−1(1− χ0(p)p−s)−1(1− χ0(p)p−2s)

=
∏
p-q

1− p−2s

(1− p−s)(1− χ(p)p−s)
=
∏

χ(p)=1

1 + p−s

1− p−s

=
∏

χ(p)=1

(
1 +

∞∑
n=1

2p−ns

)
.



It follows that ψ(s) =
∑

n ann
−s is a Dirichlet series with positive coefficients and a0 = 1.

Now expand ψ as a power series around s = 2, ψ(s) =
∑

m bm(s−2)m, and note that the
radius of convergence is at least 3/2 (the first singularity is at s = 1/2). The coefficients
are given by

bm =
ψ(m)(2)

m!
=

1

m!

∑
n

an(− log n)mn−2 = (−1)mcm

for some non-negative cm. Hence

ψ(s) =
∑
m

cm(2− s)m

with cm ≥ 0 and c0 = ψ(2) =
∑

n ann
−2 ≥ a0 = 1. From this it follows that ψ(s) ≥ 1 for

s ∈ (1/2, 2), contradicting ψ(s)→ 0 as s→ 1/2+. Therefore L(s, χ) 6= 0 as desired.

(Proof 2, taken from Serre). We reconsider the function F (s) from above, and claim an
equality

F (s) =
∏
χ

L(s, χ) =
∏
p,χ

(1− χ(p)p−s)−1 =
∏
p-q

(1− p−f(p)s)−g(p)

where f(p) is the order of p modulo q and g(p) = φ(q)/f(p). [Note that F (s) is the
Dedekind zeta function of the qth cyclotomic field, away from the ramified primes.] By
definition, χ(p) is an fth root of unity and for each choice of such a root, there are g
choices to extend the character from the subgroup of (Z/qZ)× generated by p to the
entire group. Hence ∏

χ

(1− χ(p)T ) = (1− T f )g.

If L(1, χ) = 0 for some non-principal χ, then F (s) is analytic at for σ > 0 (the L-series
for non-principal χ already are, and the simple pole of L(s, χ0) at s = 1 is balanced by
the supposed zero of L(s, χ) at s = 1). However, looking at the product expansion, for
s > 0 we have

(1− p−fs)−g =

(∑
k

p−kfs

)g

≥
∑
k

p−φ(q)ks = (1− p−φ(q)s)−1

(taking diagonal terms and noting fg = φ(q)) so that

F (s) ≥
∏
p-q

(1− p−φ(q)s)−1 = ζ(φ(q)s)
∏
p|q

(1− p−φ(q)s)

which diverges at s = 1/φ(q), a contradiction. Therefore, there can be no χ with
L(1, χ) = 0.

(Proof 3, Monsky). Here is an elementary proof for the non-vanishing of L(1, χ) for non-
principal real χ. Let cn =

∑
d|n χ(d). Note that cn ≥ 0 since cn is multiplicative and

cpa = 1 + χ(p) + χ(p)2 + · · ·+ χ(p)a ≥ 0.



Also note that
∑

n cn = ∞ since cpa = 1 for any prime dividing q. Now consider the
function (convergent on [0, 1))

f(t) =
∑
n

χ(n)
tn

1− tn
=
∑
n

∑
d

χ(n)tnd =
∑
n

tncn

which we showed satisfies f(t)→∞ as t→ 1−. If
∑

n χ(n)/n = 0 then (t ∈ [0, 1))

−f(t) =
∑
n

(
χ(n)

n

1

1− t
− χ(n)tn

1− tn

)
=
∑
n

χ(n)

(
1

n(1− t)
− tn

1− tn

)
=:
∑
n

χ(n)bn.

Note that
∑

n≤x χ(n) ≤ φ(q) and that bn → 0. If we can show that the bn are decreasing,
then the series converges for all t ∈ [0, 1) (summation by parts!) contradicting f(t)→∞
as t→ 1−. To this end, we have

(1− t)(bn − bn+1) =
1

n
− 1

n+ 1
− tn

1 + t+ · · ·+ tn−1
+

tn+1

1 + t+ · · ·+ tn

=
1

n(n+ 1)
− tn

(1 + t+ · · ·+ tn−1)(1 + t+ · · ·+ tn)
.

By the arithmetic-geometric mean inequality, we have (t ∈ [0, 1))

1

n
(1 + t+ · · ·+ tn−1) ≥ (tn(n−1)/2)1/n ≥ tn/2,

1

n+ 1
(1 + t+ · · ·+ tn) ≥ (tn(n+1)/2)1/(n+1) ≥ tn/2.

Hence

(1− t)(bn+1 − bn) =
1

n(n+ 1)
− tn

(1 + t+ · · ·+ tn−1)(1 + t+ · · ·+ tn)

≥ 1

n(n+ 1)
− tn

tnn(n+ 1)
= 0

and the theorem follows.

[Note: add some kind of density statement.]

3 Functional equations for ζ(s), L(s, χ)

Lemma (Poisson Summation). Suppose f is “nice” and decays sufficiently fast at infin-
ity, so that the periodization F (x) =

∑
n∈Z f(x+ n) converges and is equal to its Fourier

series. Then ∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

where f̂(x) =
∫∞
−∞ f(t)e−2πitxdt.



Proof. We have∑
n∈Z

f(n) = F (0) =
∑
n∈Z

(∫ 1

0

F (x)e−2πinxdx

)
e2πin0 =

∑
n∈Z

∫ 1

0

(∑
m∈Z

f(x+m)

)
e−2πinxdx

=
∑
n,m∈Z

∫ m+1

m

f(x)e−2πinxdx =
∑
n∈Z

∫ ∞
−∞

f(x)e−2πinxdx =
∑
n∈Z

f̂(n).

Lemma. The function

θ(x) =
∞∑

n=−∞

e−n
2πx

satisfies the functional equation

θ(1/x) = x1/2θ(x).

Proof. Apply Poisson summation to f(z) = e−πz
2/x with x > 0 fixed. We have

f̂(n) =

∫ ∞
−∞

e−πz
2/xe−2πinzdz (z 7→ x1/2z)

= x1/2

∫ ∞
−∞

e−π(z2+2inx1/2z)dz = x1/2e−πn
2x

∫ ∞
−∞

e−π(z+inx1/2)2dz

= x1/2e−πn
2x

since the last integral is 1, comparing it to(∫ ∞
−∞

e−πz
2

dz

)2

=

∫ 2π

0

∫ ∞
0

e−πr
2

rdrdθ = 1

say by integrating around a long rectangle along the real axis. [Or note that g(z) = e−πz
2

is its own Fourier transform so that f̂(z) = g(z/
√
x)∧ =

√
xĝ(
√
xz) =

√
xg(
√
xz) =√

xe−πz
2x.] Summing over n we get

θ(1/x) =
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n) = x1/2θ(x).

Theorem (Functional equation for ζ(s)). The equation

π−s/2Γ(s/2)ζ(s) =
1

s(s− 1)
+

∫ ∞
1

(xs/2 + x(1−s)/2)ω(x)
dx

x

(where ω(x) =
∑∞

n=1 e
−n2πx = (θ(x) − 1)/2) gives a continuation of ζ(s) to the whole

plane. The expression on the right is invariant under s↔ 1− s, so that

ξ(s) :=
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s) = ξ(1− s),

and ξ(s) is entire.



Proof. We start with the gamma function (say for σ > 1)

Γ(s/2) =

∫ ∞
0

e−xxs/2−1dx

and make a change of variable, x = n2πt to obtain

n−sπ−s/2Γ(s/2) =

∫ ∞
0

e−n
2πtts/2−1dt.

Sum over n and interchange limits (
∑

n

∫∞
0
e−n

2πtts/2−1dt converges uniformly for σ > 0)
to obtain

π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

ω(t)ts/2−1dt.

Split the integral at t = 1 and use the functional equation for θ(t)

ω(1/t) =
1

2
(θ(1/t)− 1) =

1

2

(
t1/2θ(t)− 1

)
=

1

2

(
t1/2(2ω(t) + 1)− 1

)
= −1

2
+
t1/2

2
+ t1/2ω(t)

to obtain

n−sπ−s/2Γ(s/2) =

∫ ∞
0

ω(t)ts/2−1dt =

∫ 1

0

ω(t)ts/2−1dt+

∫ ∞
1

ω(t)ts/2−1dt

(t 7→ 1/t) =

∫ ∞
1

[(
−1

2
+
t1/2

2
+ t1/2ω(t)

)
t−s/2+1

]
1

t2
dt+

∫ ∞
1

ω(t)ts/2−1dt

= −1

s
+

1

s− 1
+

∫ ∞
1

[
ω(t)t−s/2−1/2 + ω(t)ts/2−1

]
dt

=
1

s(s− 1)
+

∫ ∞
1

(
t−s/2−1/2 + ts/2−1

)
ω(t)dt

=
1

s(s− 1)
+

∫ ∞
1

(
t(1−s)/2 + ts/2

)
ω(t)

dt

t
.

Note that the last integral converges for all s.

Here is another version/proof of the functional equation for ζ(s).

Theorem. The Riemann zeta function satisfies

ζ(s) = 2sπs−1Γ(s− 1) sin(πs/2)ζ(1− s).

Proof. Start with the gamma integral, make a change of variable y = nx

Γ(s) =

∫ ∞
0

ys−1e−ydy = ns
∫ ∞

0

xs−1e−nxdx,



divide by ns and sum over n to obtain

Γ(s)ζ(s) =
∑
n

∫ ∞
0

xs−1e−nxdx =

∫ ∞
0

xs−1

(∑
n

e−nx

)
dx =

∫ ∞
0

xs−1

ex − 1
dx.

Consider the contour integral

I(s) =

∫
C

zs−1

ez − 1
dz

where C goes from +∞ just above the real axis, circles the origin once (avoiding non-zero
roots of ez − 1), and returns to +∞ just below the real axis. If Cρ is the circle around
the origin and z = ρeiθ, then for σ > 1 we have∣∣∣∣∣

∫
Cρ

zs−1

ez − 1
dz

∣∣∣∣∣ ≤ 2πρ
ρσ−1

|
∑

n≥1 ρ
neinθ/n!|

=
2πρσ−1

|eiθ + ρ(. . . )|
→ 0 as ρ→ 0.

Thus

I(s) = −
∫ ∞

0

xs−1

ex − 1
dx+

∫ ∞
0

e2πi(s−1)xs−1

ex − 1
dx = (e2πi(s−1) − 1)

∫ ∞
0

xs−1

ex − 1
dx

= (e2πi(s−1) − 1)Γ(s)ζ(s) = (e2πi(s−1) − 1)
π

sin(πs)Γ(1− s)
ζ(s)

= ζ(s)
2πieπis

Γ(1− s)
,

(using the identity Γ(s)Γ(1− s) = π/ sin(πs)) so that

ζ(s) = e−iπsΓ(1− s) 1

2πi

∫
C

zs−1

ez − 1
dz.

To get the functional equation, consider the contour Cn starting at +∞ just above the
real axis, going around the square defined by the vertices {(2n + 1)π(±1 ± i)}, and
returning to +∞ just below the real axis. We use residues ((ez − 1)−1 has simple poles
with residue 1 at 2πik, k ∈ Z) to calculate

1

2πi

∫
Cn−C

zs−1

ez − 1
dz =

n∑
k=1

[(2πik)s−1 + (−2πik)s−1] =
n∑
k=1

(2πk)s−1(is−1 + (−i)s−1)

= e(s−1)πi2sπs−1 cos

(
π(s− 1)

2

) n∑
k=1

ks−1 (note − i = e3πi/2)

= e(s−1)πi2sπs−1 sin
(πs

2

) n∑
k=1

ks−1.

This gives us

I(s) =

∫
C

zs−1

ez − 1
dz =

∫
Cn

zs−1

ez − 1
dz −

∫
Cn−C

zs−1

ez − 1
dz

=

∫
Cn

zs−1

ez − 1
dz − ie(s−1)πi2s+1πs sin

(πs
2

) n∑
k=1

ks−1.



Note that
∫
Cn

zs−1

ez−1
dz → 0 as n → ∞ to get the functional equation by taking the limit

n→∞ above

I(s) = ζ(s)
2πieπis

Γ(1− s)
= −ie(s−1)πi2s+1πs sin

(πs
2

)
ζ(1− s)

⇒ ζ(s) = 2sπs−1Γ(s− 1) sin(πs/2)ζ(1− s).

An easy consequence of the above work is the value of ζ(s) at non-negative integers
and at positive even integers. From the integral representation of ζ(s) above, we have,
for n ≥ 0,

ζ(−n) = enπiΓ(n+ 1)
1

2πi

∫
C

z−n−1

ez − 1
dz

= (−1)nn!
1

2πi

∫
C

z−n−2

(∑
n

Bn

n!
zn

)
dz

= (−1)nn!
Bn+1

(n+ 1)!
= (−1)n

Bn+1

n+ 1

where the Bernoulli numbers, Bn come from the coefficients of the Taylor series

z

ez − 1
=
∑
n

Bn

n!
zn.

For instance

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ζ(−3) =

1

120
, and ζ(−2n) = 0 for n ≥ 1.

Using the functional equation, we get, for n ≥ 1 odd (else we get 0 = 0 below)

(−1)n
Bn+1

n+ 1
= ζ(−n) = 2−nπ−n−1 sin(−nπ/2)ζ(1 + n)Γ(1 + n)

⇒ ζ(2m) =
B2m

(2m)!
22m−1π2m(−1)m+1.

For instance

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

We now move on to the functional equation for L(s, χ) where χ is primitive, i.e. q is
the smallest period of χ in that there does not exist a divisor d of q and a character χ′

modulo d such that χ is given by the composition

(Z/qZ)× → (Z/dZ)×
χ′→ C×.



Definition. A Gauss sum τ(χ) associated to a character χ of modulus q is

τ(χ) =

q∑
m=1

χ(m)e2πim/q.

More generally, define

τ(χ, z) =

q∑
m=1

χ(m)e2πimz/q.

Lemma. If χ is primitive, we have

χ(n) =
1

τ(χ̄)

∑
m

χ̄(m)e2πimn/q =
τ(χ̄, n)

τ(χ̄)
,

and |τ(χ)|2 = q.

Proof. If (n, q) = 1 we have

χ(n)τ(χ̄) = χ(n)
∑
m

χ̄(m)e2πim/q =
∑
m

χ̄(mn−1)e2πimn−1n/q =
∑
k

χ̄(k)e2πikn/q = τ(χ̄, n)

where k = mn−1 modulo q, whether or not χ is primitive. The last expression also holds
for (n, q) = d > 1 if χ is primitive (in which case both sides are zero). It cannot be the
case that χ is trivial on the kernel (Z/qZ)× → (Z/dZ)× else we extend from the image
to a character χ′ : (Z/dZ)× → C× and χ is not primitive. Hence there is a b prime to q
and congruent to 1 modulo d with χ(b) 6= 1, in which case bn ≡ n(q) since

b− 1 = ld = l
q

(n, q)
⇒ n(b− 1) =

nl

(n, q)
q.

Therefore

τ(χ, n) =
∑
a

χ(a)e2πian/q =
∑
a

χ(ab)e2πiabn/q = χ(b)
∑
a

χ(a)e2πian/q = χ(b)τ(χ, n)

with χ(b) 6= 1 so that τ(χ, n) = 0 as desired.
Finally, we show that for χ primitive, |τ(χ)| = q1/2. Using the expression above we

have

φ(q)|τ(χ̄)|2 =
∑
n

|χ(n)|2|τ(χ̄)|2 =
∑
n,k,l

χ(k)χ̄(l)e2πi(l−k)n/q

=
∑
k=l

∑
n

|χ(k)|2 +
∑
k 6=l

χ(k)χ̄(l)
∑
n

e2πi(l−k)n/q

= qφ(q) + 0,

and |τ(χ)|2 = q as desired. Hence we can divide by τ(χ) and the lemma follows.

We need functional equations similar to that of θ(1/x) = x1/2θ(x) used above.



Proposition (Functional equations for ψ0, ψ1). Given a primitive character χ of modulus
q, define ψ0, ψ1 (for χ(−1) = 1 or −1) by

ψ0(χ, x) =
∑
n∈Z

χ(n)e−n
2πx/q, ψ1(χ, x) =

∑
n∈Z

nχ(n)e−n
2πx/q.

These functions satisfy the functional equations

ψ0(χ̄, 1/x) = (x/q)1/2τ(χ̄)ψ0(χ, x), ψ1(χ̄, 1/x) = −ix3/2q−1/2τ(χ̄)ψ1(χ, x).

Proof. Define functions

f(z, x) = e−πz
2/x, f0(z, x) = e−π(qz+b)2/(qx), f1(z, x) = (qz + b)e−π(qz+b)2/(qx)

so that

f0(z, x) = f(qz + b, qx), f1(z, x) =
qz

−2π

∂f

∂z
(qz + b, qx).

We showed earlier that f̂(z, x) = x1/2f(z, 1/x) and applied Poisson summation to get the
functional equation for θ earlier. We piggyback off of this using properties of the Fourier
transform, namely

(g(z + b))∧ = e2πibĝ(z), (g(az))∧ =
1

a
ĝ(z/a),

(
∂g

∂z

)∧
= 2πizĝ(z).

Hence

f̂0(z, x) = q−1e2πizb/qf̂(z/q, qx) = (x/q)1/2e−πz
2x/qe2πizb/q,

f̂1(z, x) =
qz

−2π

(
∂f

∂z
(qz + b, qx)

)∧
=

x

−2π
e2πizb/q

(
∂f

∂z

)∧
(z/q, qx)

= −ix3/2q−1/2ze2πizb/qe−πz
2x/q.

By Poisson summation, we have∑
n

f̂0(n, x) =
∑
n

(x/q)1/2e−πn
2x/qe2πinb/q =

∑
n

f0(n, x) =
∑
n

e−π(qn+b)2/(qx),∑
n

f̂1(n, x) =
∑
n

−ix3/2q−1/2ne2πinb/qe−πn
2x/q =

∑
n

f1(n, x) =
∑
n

(qn+ b)e−π(qn+b)2/(qx).

Now multiply by χ̄(b) and sum over b modulo q to get

(x/q)1/2
∑
n

e−πn
2x/q

∑
b

χ̄(b)e2πinb/q =
∑
n,b

χ̄(b)e−π(qn+b)2/(qx),

−ix3/2q−1/2
∑
n

ne−πn
2x/q

∑
b

χ̄(b)e2πinb/q =
∑
n,b

χ̄(b)(qn+ b)e−π(qn+b)2/(qx).

Use the lemma above (τ(χ̄, n) = χ(n)τ(χ̄)) to finally obtain

(x/q)1/2τ(χ̄)ψ0(χ, x) = ψ0(χ̄, 1/x),

−ix3/2q−1/2τ(χ̄)ψ1(χ, x) = ψ1(χ̄, 1/x).



Theorem (Functional equation for L(s, χ)). Given a primitive character χ of modulus
q, define

ξ(s, χ) = (π/q)−
s+a
2 Γ

(
s+ a

2

)
L(s, χ)

where a = 0, 1 if χ(−1) = 1,−1. Then ξ satisfies the functional equation

ξ(1− s, χ̄) =
iaq1/2

τ(χ)
ξ(s, χ).

Proof. Suppose χ(−1) = 1. We proceed as in the construction of the functional equation
for ζ starting with

Γ(s/2) =

∫ ∞
0

e−xxs/2−1dx,

substituting x = n2πt/q

(π/q)−s/2n−sΓ(s/2) =

∫ ∞
0

e−n
2πt/qts/2−1dt,

multiplying by χ(n) and summing over n to get

ξ(s, χ) = (π/q)−s/2Γ(s/2)L(s, χ) =
1

2

∫ ∞
0

ψ0(t, χ)ts/2−1dt

where
ψ0(t, χ) =

∑
n∈Z

χ(n)e−n
2πt/q.

Split the integral at t = 1 and use the functional equation for ψ0

ξ(s, χ) =
1

2

∫ ∞
1

ψ0(t, χ)ts/2−1dt+
1

2

∫ ∞
1

ψ0(1/t, χ)t−s/2−1dt

=
1

2

∫ ∞
1

ψ0(t, χ)ts/2−1dt+
τ(χ)

2q1/2

∫ ∞
1

ψ0(t, χ̄)t−s/2−1/2dt

=
τ(χ)

q1/2
ξ(1− s, χ̄)

using the fact that τ(χ)τ(χ̄) = τ(χ)τ(χ) = q (since χ is even).
Now assume χ(−1) = −1. We start with Γ((s+ 1)/2)

Γ((s+ 1)/2) =

∫ ∞
0

e−xx(s−1)/2dx,

substituting x = n2πt/q

(π/q)−(s+1)/2n−sΓ((s+ 1)/2) =

∫ ∞
0

ne−n
2πt/qt(s−1)/2dt,



multiplying by χ(n) and summing over n to get

ξ(s, χ) = (π/q)−(s+1)/2Γ((s+ 1)/2)L(s, χ) =
1

2

∫ ∞
0

ψ1(t, χ)t(s−1)/2dt

where
ψ1(t, χ) =

∑
n∈Z

nχ(n)e−n
2πt/q.

Split the integral at t = 1 and use the functional equation for ψ1

ξ(s, χ) =
1

2

∫ ∞
1

ψ0(t, χ)t(s−1)/2dt+
1

2

∫ ∞
1

ψ0(1/t, χ)t−(s+3)/2dt

=
1

2

∫ ∞
1

ψ0(t, χ)t(s−1)/2dt+
iq1/2

2τ(χ̄)

∫ ∞
1

ψ0(t, χ̄)t−s/2dt

= ξ(1− s, χ̄)

using the fact that τ(χ)τ(χ̄) = −τ(χ)τ(χ) = −q (since χ is odd).

Here is another proof of the functional equation, along the lines of the second proof
for ζ given above (taken from Brendt).

Theorem. For χ modulo q primitive, we have

L(1− s, χ) = qs−1(2π)−sτ(χ)Γ(s)L(s, χ̄)(e−πis/2 + χ(−1)eπis/2).

Proof. Start with Γ, make a change of variable, multiply by χ(n) and sum over n

Γ(s) =

∫ ∞
0

e−xxs−1dx = ns
∫ ∞

0

e−nxxs−1dx,

L(s, χ)Γ(s) =

∫ ∞
0

(∑
n

χ(n)e−nx

)
xs−1dx =

∫ ∞
0

(∑
a

χ(a)
∑
n

e−(nq+a)x

)
xs−1dx

=

∫ ∞
0

xs−1
∑
n

e−nqx
∑
a

χ(a)e−axdx =

∫ ∞
0

τ

(
χ,
iqx

2π

)
xs−1

1− eqx
dx.

We will calculate the integral using residues. Consider the function

F (z) =
πe−πizτ(χ̄, z)

zs sin(πz)τ(χ̄)

and the positively oriented contour Cm consisting of two right semicirlces and the seg-
ments connecting them

Γm = {(m+1/2)eiθ : −π/2 ≤ θ ≤ π/2}, Γε = {εeiθ : −π/2 ≤ θ ≤ π/2}, {it : ±ε ≤ t ≤ ±(m+1)}.

F is meromorphic on the interior of Cm with simple poles at the zeros of the sine factor,
z = 1, . . . ,m, with residues

lim
z→n

(z−n)F (z) =
e−nπi

ns
τ(χ̄, n)

τ(χ̄)
lim
z→n

π(z − n)

sin(πz)
= (−1)n

χ(n)

ns
lim
z→n

π(z − n)

(−1)n sin(π(z − n))
=
χ(n)

ns
.



Hence
1

2πi

∫
Cm

F (z)dz =
m∑
n=1

χ(n)

ns
.

For s > 1 the integral on Γm goes to zero since∣∣∣∣πe−πizτ(χ̄, z)

τ(χ̄) sin(πz)

∣∣∣∣ =

∣∣∣∣ 2πiτ(χ̄, z)

τ(χ̄)(e2πiz − 1)

∣∣∣∣ ≤ 2π
√
q
e−2π=(z)/q

|e2πiz − 1|
≤M

is bounded. Letting m→∞ gives

L(s, χ) =

∫ i∞

iε

τ(χ̄, z)dz

τ(χ̄)zs(1− e2πiz)
+

∫ −i∞
−iε

e−2πizτ(χ̄, z)dz

τ(χ̄)zs(1− e−2πiz)
+

∫
Γε

F (z)dz,

and the two infinite integrals converge uniformly on compacta. For s < 0, F (z) → 0 as
z → 0 since τ(χ̄, z) → 0 and sin(πz) has a simple zero. Hence the integral over Γε goes
to zero and we get, letting ε → 0 and z 7→ iy,−iy in the first line, y 7→ qy/2π in the
second line,

L(s, χ) =

∫ ∞
0

iτ(χ̄, iy)dy

τ(χ̄)(eπi/2y)s(1− e−2πy)
+

∫ ∞
0

−ie−2πyτ(χ̄,−iy)dy

τ(χ̄)(eπi/2y)s(1− e−2πy)

= ie−πis/2(q/2π)1−s
∫ ∞

0

τ(χ̄, iqy/2π)dy

τ(χ̄)ys(1− e−qy)

− ieπis/2(q/2π)1−s
∫ ∞

0

e−qyτ(χ̄,−iqy/2π)dy

τ(χ̄)ys(1− e−qy)
.

Note that under j 7→ q − j in the Gauss sum we have

τ(χ, z) =
∑
j

χ(j)e2πijz/q = χ(−1)e2πiz
∑
j

χ(j)e−2πijz/q = χ(−1)e2πizτ(χ,−z).

Using this above we get

L(s, χ) =
i

τ(χ̄)
(q/2π)1−s(e−πis/2 − χ(−1)eπis/2)

∫ ∞
0

τ(χ̄, iqy/2π)dy

ys(1− e−qy)

=
i

τ(χ̄)
(q/2π)1−s(e−πis/2 − χ(−1)eπis/2)Γ(1− s)L(1− s, χ̄)

upon inspection of our earlier integral representation for Γ(s)L(s, χ). Upon s → 1 − s
and using τ(χ)τ(χ̄) = χ(−1)q, we get the stated functional equation.

4 Product Formula for ξ(s), ξ(s, χ)

We would like to establish the product representation

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ, eA = ξ(0) =

1

2
, B =

ξ′(0)

ξ(0)
= −γ

2
− 1 +

1

2
log 4π



where the product is over all the zeros of ξ, i.e. the non-trivial zeros of the Riemann zeta
function, and a similar product

ξ(s, χ) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ,

the product over all zeros of ξ(s, χ), the non-trivial zeros of L(s, χ).
We have the following theorems of complex analysis.

Theorem (Weierstrass Factorization). For any entire function with non-zero zeros an
(repeated with multiplicity) and a zero of order m at zero there exists an entire function
g and a sequence of integers pn such that

f(z) = eg(z)zm
∏
n

Epn(z/an)

where
E0(z) = 1− z, Ep(z) = (1− z)e1+z+z2/2+···+zp/p

Conversely, if |an| → ∞ is a sequence of non-zero complex numbers and pn are integers
such that ∑

n

(
r

|an|

)pn+1

<∞ for all r > 0,

then ∏
n

Epn(z/an)

is entire with zeros only at an (with prescribed multiplicity).

For example

sin(πz) = πz
∏

n∈Z\{0}

(1− z/n)ez/n = πz
∞∏
n=1

(1− z2/n2),

and

1/Γ(z) = eγzz

∞∏
n=1

(1 + z/n)e−z/n

We say that an entire function f is of order λ <∞ if λ is greatest lower bound among
λ such that

|f(z)| = O
(
e|z|

λ
)

as |z| → ∞.

Assume that an entire function f has a Weierstrass factorization with pn = p constant
(i.e. there is an integer p such that

∑
n |an|−(p+1) <∞) and g(z) a polynomial of degree

q. Taking p minimal makes p and g + 2πiZ unique. The genus of f is the maximum of
p and q. We have the following proposition.



Proposition. If f is entire of genus µ, then for all α > 0 and for |z| large enough, we
have

|f(z)| ≤ eα|z|
µ+1

,

i.e. an entire function f of genus µ has order less or equal µ+ 1.

The proof of the proposition depends on the following.

Theorem (Jensen’s Formula). If f is entire with zeros zi inside |z| < R, f(0) 6= 0, and
f(z) 6= 0 on |z| = R, then

1

2π

∫ 2π

0

log |f(Reiθ)|dθ = log |f(0)|+ log
Rn

|z1| · · · · · |zn|
=

∫ R

0

n(r)

r
dr

where n(r) is the number of zeros of f of absolute value less than r.

One consequence of Jensen’s formula is that if f is of order λ and α > λ, then∑
i |zi|−α <∞. To see this, note that n(R) = O(Rα) since∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log |f(Reiθ)|dθ − log |f(0)| ≤ Rα − log |f(0)|

and ∫ 2R

R

n(r)

r
dr ≥ n(R) log 2

so that

n(R) log 2 ≤
∫ 2R

0

n(r)

r
dr ≤ (2R)α − log |f(0)| = O(Rα).

From this we see that for β > α > λ∑
i

|zi|−β =

∫ ∞
0

r−βdn(r) = β

∫ ∞
0

r−β−1n(r)dr <∞.

The converse of the above proposition holds, showing that entire functions of finite order
have nice factorizations.

Theorem (Hadamard Factorization). An entire function f of order λ has finite genus
µ ≤ λ.

We apply the above to the entire functions ξ(s), ξ(s, χ). We will need the following
to estimate their rates of growth.

Theorem (Stirling’s Formula). For z ∈ C\(−∞, 0] we have

Γ(z) =
√

2πz
(z
e

)z
eµ(z)

where

µ(z) = −
∫ ∞

0

{t} − 1/2

z + t
dt =

∫ ∞
0

1

2

{t} − {t}2

(z + t)2
dt

with {t} = t− btc the fractional part of t, and bounds on µ given by

|µ(z)| ≤ 1

8

1

cos2(θ/2)

1

|z|
, z = |z|eiθ.



Lemma. The entire functions ξ(s), ξ(s, χ), have order 1.

Proof. Since ξ(s) = ξ(1− s) we consider σ ≥ 1/2, where we have∣∣∣∣s(s− 1)

2
π−s/2

∣∣∣∣ ≤ eC|s|,

|Γ(s/2)| ≤ eC|s| log |s|,

|ζ(s)| =
∣∣∣∣ s

s− 1
+ s

∫ ∞
1

{x}
xs+1

dx

∣∣∣∣ ≤ C|s|,

using Stirling’s formula and an integral representation of ζ(s) applicable for σ > 0. Hence
ξ(s) has order at most 1, actually equal to 1 since for real s→∞ we have ζ(s)→ 1 and
log Γ(s) ∼ s log s.

Similarly if χ is a primitive character modulo q, then for ξ(s, χ) = (q/π)(s+a)/2)Γ((s+

a)/2)L(s, χ) with functional equation ξ(1− s, χ̄) =
ia
√
q

τ(χ)
ξ(s, χ), and for σ ≥ 1/2 we have∣∣(q/π)(s+a)/2)

∣∣ ≤ eC|s|,

|Γ((s+ a)/2)| ≤ eC|s| log |s|,

|L(s, χ)| =
∣∣∣∣s∫ ∞

1

∑
n≤x χ(n)

xs+1
dx

∣∣∣∣ ≤ C|s|,

so that |ξ(s, χ)| ≤ q(σ+1)/2eC|s| log |s| (for σ > 1/2, similar results for σ < 1/2 by the
functional equation). Hence ξ(s, χ) is of order 1 as well.

From the general theory above, we have the desired product formulae for ξ(s), ξ(s, χ).
Although the constants A,B are not of much importance, we calculate them for ξ

anyway. For the constant A we have

eA = ξ(0) = ξ(1) =
1

2
√
π

Γ(1/2) lim
s→1

(s− 1)ζ(s) = 1/2.

For the constant B we have

B =
ξ′(0)

ξ(0)
= −ξ

′(1)

ξ(1)

so we consider

ξ′(s)

ξ(s)
= B +

∑
ρ

1

s− ρ
+

1

ρ
=
ζ ′(s)

ζ(s)
+

1

s− 1
− log

√
π +

1

2

Γ′(1 + s/2)

Γ(1 + s/2)
,

and
Γ′(s)

Γ(s)
= −γ − 1

s
+
∑
n≥1

(
1

n
− 1

s+ n

)
.

Hence

1

2

Γ′(3/2)

Γ(3/2)
= −γ

2
− 1

3
+
∑
n≥1

(
1

2n
− 1

3 + 2n

)
= −γ

2
− 1 +

∑
n≥2

(−1)n

n
= −γ

2
+ 1− log 2



and

B = −γ
2
− 1 + log

√
4π − lim

s→1

(
ζ ′(s)

ζ(s)
+

1

s− 1

)
.

With I(s) =
∫∞

1
{x}/xs+1dx we have

ζ(s) =
s

s− 1
(1− (s− 1)I(s))

so that
ζ ′(s)

ζ(s)
+

1

s− 1
=

1

s
− (s− 1)I ′(s) + I(s)

1− (s− 1)I(s)

and

lim
s→1

ζ ′(s)

ζ(s)
+

1

s− 1
= 1− I(1).

Finally note that

I(1) =

∫ ∞
1

x− bxc
x2

dx = lim
N→∞

∫ N

1

dx

x
−

N−1∑
n=1

n

∫ n+1

n

1

x2

= lim
N→∞

logN −
N−1∑
n=1

(
1

n
− 1

n+ 1

)
= 1 + lim

N→∞
logN −

N∑
n=1

1

n

= 1− γ,

so that
B = −γ

2
− 1 + log

√
4π.

Another expression for B in terms of the zeros of ξ is

B = −1

2

∑
ρ

1

ρ(1− ρ)

which can be seen from the equation (using s↔ 1− s and ρ↔ 1− ρ)

B +
∑
ρ

(
1

s− ρ
+

1

ρ

)
= −B −

∑
ρ

(
1

1− s− ρ
+

1

ρ

)
from ξ′/ξ or from the product itself (say at s = 0)

eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ = eA+B(1−s)

∏
ρ

(
1− 1− s

1− ρ

)
e(1−s)/(1−ρ).

Using this we can write the product formula (similar to that of sin(πz) combining the
roots ±n) as

ξ(s) = ξ(0)
∏
=ρ>0

(
1− s(1− s)

ρ(1− ρ)

)
.



5 A Zero-Free Region and the Density of Zeros for

ζ(s)

We would like to extend the zero-free region of the zeta function to an open set containing
σ ≥ 1. Specifically we have the following.

Theorem. There is a c > 0 such that <ρ < 1− c/ log(|t|+ 2) for any zero ρ of ζ(s).

Proof. Once again we make use of

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0

applied to

−<ζ
′(s)

ζ(s)
=
∑
n

Λ(n)

nσ
cos(t log n).

Considering the logarithmic derivative via the product formula for ξ we have

ζ ′(s)

ζ(s)
= B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

s− 1
− 1

2

Γ′(1 + s/2)

Γ(1 + s/2)
+

1

2
log π.

We obtain the following estimates (say for 1 ≤ σ ≤ 2, |t| ≥ 2, using A to represent a
positive constant, not the same at each instance)

−ζ(σ)

ζ(σ)
<

1

σ − 1
+ A,

−<ζ(σ + it)

ζ(σ + it)
< A log |t| − 1

σ − β
,

−<ζ(σ + 2it)

ζ(σ + 2it)
< A log |t|,

where ρ = β + iγ is a zero of zeta with γ = t, using the facts that Γ′(s)/Γ(s) ≤ A log |t|
(PROOF???) and that the sum over the roots is positive

<
(

1

s− ρ
+

1

ρ

)
=

σ − β
|s− ρ|2

+
β

|ρ|2
.

Hence we obtain

3

(
−ζ(σ)

ζ(σ)

)
+ 4

(
−<ζ(σ + it)

ζ(σ + it)

)
+

(
−<ζ(σ + 2it)

ζ(σ + 2it)

)
≥ 0,

3

(
1

σ − 1
+ A

)
+ 4

(
A log |t| − 1

σ − β

)
+ (A log |t|) ≥ 0,

3

σ − 1
− 4

σ − β
+ A log |t| ≥ 0.



Let σ = 1 + δ/ log |t| for some positive δ. Then

β ≤ 1− δ − Aδ2

log |t|

and choosing δ so that δ−Aδ2 > 0 we have β ≤ 1− c/ log |t| for some c > 0. Combining
this with the fact that ζ has no zeros in the region 1 ≤ σ ≤ 2, |t| < 2 gives the result.

We also have the following estimate stated by Riemann about the density of zeros in
the critical strip 0 < σ < 1.

Theorem. Let N(T ) be the number of zeros of ζ(s) in the region 0 < σ < 1, 0 < t < T .
Then

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )

as T →∞.

Proof. Let R be the rectangle with vertices {−1, 2, 2 + iT,−1 + iT}. Then if T doesn’t
coincide with the ordinate of a zero, we have

2πN(T ) = ∆R arg ξ(change in the argument).

Since ξ(s) = ξ(1−s) = ξ(1− s̄) and xi is real on the real axis, we have πN(T ) = ∆L arg ξ
where L is the segment running between 2, 2 + iT, 1/2 + iT . With

ξ(s) = π−s/2(s− 1)Γ(1 + s/2)ζ(s)

and
log Γ(s) = (s− 1/2) log s− s+ log(

√
2π) +O(1/s)

we have

∆L arg(s− 1) = arg(iT − 1/2) =
π

2
+ arctan

(
1

2T

)
=
π

2
+O(1/T ),

∆L arg π−s/2 = arg
(
e−(1/2+iT ) log(π)/2

)
= −T

2
log(π),

∆L arg Γ(1 + s/2) = = log Γ

(
5

4
+
T

2
i

)
= =

[(
3

4
+
T

2
i

)
log

(
5

4
+
T

2
i

)
−
(

5

4
+
T

2
i

)
+ log(

√
2π) +O(1/T )

]
=
T

2
log

(
T

2

)
− T

2
+

3π

8
+O(1/T ),

(using

log

(
5

4
+
T

2
i

)
= log

(
T

2

)
+O(1/T 2) +

(π
2

+O(1/T )
)
i.

in the last step). So we have

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ ∆L arg ζ +O(1/T ).

We now show that ∆L arg ζ = arg ζ(1/2 + iT ) = O(log T ).



6 A Zero-Free Region and the Density of Zeros for

L(s, χ)

7 Explicit Formula Relating the Primes to Zeros of

ζ(s)

We first want to establish a formula explicitly relating the primes to the zeros of the
Riemann zeta function, namely

ψ0(x) = x−
∑
ρ

xρ

ρ
− 1

2
log(1− x−2)− ζ ′(0)

ζ(0)

where ψ0 is the Chebychev function ψ(x), but taking its average value at discontinuities

ψ0(x) =

 ψ(x) =
∑
n≤x

Λ(n) x not a prime power

ψ(x)− 1
2
Λ(x) x a prime power

(here Λ(n) = log p if n = pk, k ≥ 1 is a prime power, zero otherwise, is the von Mangoldt
function).

The sum over the non-trivial zeros of the zeta function is conditionally convergent,
so we pair ρ, ρ̄. Also note that the log term is the sum over the trivial zeros of zeta,

−
∑
n

x−2n

n
= log(1− x−2)

and that ζ ′(0)/ζ(0) = log(2π): using ξ′/ξ, the derivation of the constant B and the fact
that Γ′(1)/Γ(1) = −γ we have

ζ ′(0)

ζ(0)
= B + 1 + log

√
π − 1

2

Γ′(1)

Γ(1)

=
(
−γ

2
− 1 + log

√
4π
)

+ 1 + log
√
π +

γ

2
= log(2π).

We obtain this forumla by evaluating the integral

−1

2πi

∫ c+i∞

c−i∞

ζ ′(s)

ζ(s)
xs
ds

s

in two differnent ways. From the Euler product, the logarithmic derivative of ζ is inti-
mately related to the von Mangoldt function

ζ ′(s)

ζ(s)
=

d

ds
log
∏
p

(
1− p−s

)−1
= −

∑
p,n>0

p−ns log p = −
∑
n

Λ(n)

ns
.



From the product expression for ξ, we can express ζ ′/ζ in terms of the zeros of zeta,

d

ds
log ξ(s) = B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
=

d

ds
log
(
(s− 1)π−s/2Γ(1 + s/2)ζ(s)

)
=

1

s− 1
+
ζ ′(s)

ζ(s)
+

1

2

Γ′(1 + s/2)

Γ(1 + s/2)
− 1

2
log π,

so that
ζ ′(s)

ζ(s)
= B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

s− 1
− 1

2

Γ′(1 + s/2)

Γ(1 + s/2)
+

1

2
log π.

We need the following lemma.

Lemma. Let c, y > 0. Then

lim
T→∞

1

2πi

∫ c+iT

c−iT
ys
ds

s
=


0 0 < y < 1

1/2 y = 1
1 y > 1

.

More specifically, if

δ(y) =


0 0 < y < 1

1/2 y = 1
1 y > 1

, I(y, T ) =
1

2πi

∫ c+iT

c−iT
ys
ds

s
,

then

|I(y, T )− δ(y)| ≤
{
yc min{1, (T | log y|)−1} y 6= 1

cT−1 y = 1
.

Proof. For one of the inequalities, we consider the integral (2πi)−1
∫
R
ysds/s around a

large rectangle R with corners {c± iT, C ± iT} and let C → ±∞ depending on whether
0 < y < 1 or y > 1, the integral along the vertical edge at infinity being zero in each case
respectively.

For 0 < y < 1, we have (2πi)−1
∫
R
ysds/s = 0 so that

I(y, T ) =
1

2πi

∫ ∞−iT
c−iT

ys

s
ds− 1

2πi

∫ ∞+iT

c+iT

ys

s
ds

and

|I(y, T )− δ(y)| < 1

T

∫ ∞
c

yσdσ =
−πyc

log y
.

For y > 1, we have (2πi)−1
∫
R
ysds/s = 1 so that

I(y, T ) = 1− 1

2πi

∫ c−iT

−∞−iT

ys

s
ds+

1

2πi

∫ c+iT

−∞+iT

ys

s
ds



and

|I(y, T )− δ(y)| < 1

T

∫ c

−∞
yσdσ =

πyc

log y
.

For the other inequality, we use a circular contour of radius R = (c2 + T 2)1/2 centered at
the origin where ∣∣∣∣yss

∣∣∣∣ =
yR cos θ

R
≤ yc

R
for either of 0 < y < 1, 1 < y

to see that

|I(y, T )− δ(y)| ≤ 2πR
1

2π

yc

R
= yc.

Finally, for the case y = 1 we have

I(1, T ) =
1

2πi

∫ T

−T

d(c+ it)

c+ it
=

1

2π

∫ T

0

(
1

c+ it
− 1

c− it

)
dt =

1

π

∫ T

0

c

c2 + t2
dt

=
1

π

∫ T/c

0

du

1 + u2
=

1

2
−
∫ ∞
T/c

du

1 + u2
,∣∣∣∣I(1, T )− 1

2

∣∣∣∣ =
1

π

∫ ∞
T/c

du

1 + u2
≤
∫ ∞
T/c

du

u2
=

c

T
.

Using the lemma we have

−1

2πi

∫ c+i∞

c−i∞

ζ ′(s)

ζ(s)
xs
ds

s
= lim

T→∞

1

2πi

∫ c+iT

c−iT

∑
n

Λ(n)

ns
xs
ds

s
= ψ0(x),

while the evaluation of the integral using the other expression for ζ ′/ζ gives, for x > 1,

−1

2πi

∫ c+i∞

c−i∞

ζ ′(s)

ζ(s)
xs
ds

s

=
−1

2πi

∫ c+i∞

c−i∞

(
B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

s− 1
− 1

2

Γ′(1 + s/2)

Γ(1 + s/2)
+

1

2
log π

)
xs
ds

s

=
−1

2πi

∫ c+i∞

c−i∞

(
log(2π)− s

s− 1
+
∑
ρ

s

ρ(s− ρ)
−
∑
n≥1

s

2n(s+ 2n)

)
xs
ds

s

=− ζ ′(0)

ζ(0)
+

1

2πi

∫ c+i∞

c−i∞

xsds

s− 1
−
∑
ρ

1

ρ

1

2πi

∫ c+i∞

c−i∞

xsds

s− ρ
+
∑
n≥1

1

2n

1

2πi

∫ c+i∞

c−i∞

xsds

s+ 2n

=− ζ ′(0)

ζ(0)
+ x

1

2πi

∫ c+i∞

c−i∞

xs−1ds

s− 1
−
∑
ρ

xρ

ρ

1

2πi

∫ c+i∞

c−i∞

xs−ρds

s− ρ
+
∑
n≥1

x−2n

2n

1

2πi

∫ c+i∞

c−i∞

xs+2nds

s+ 2n

=− ζ ′(0)

ζ(0)
+ x−

∑
ρ

xρ

ρ
+
∑
n≥1

x−2n

2n
,

(modulo a whole bunch of convergence).



8 Chebyshev Estimates and the Prime Number The-

orem

We start with some elementary estimates, bounding π(x), the number of primes less or
equal x.

Theorem (Chebyshev Estimates). There are constants 0 < c1 ≤ 1 ≤ c2 such that

c1x

log x
≤ π(x) ≤ c2x

log x
.

Proof. For an upper bound, we start with∏
n<p<2n

p <

(
2n

n

)
< 22n

so that, for ϑ(x) =
∑

p≤x log p we have

ϑ(2n)− ϑ(n) =
∑

n<p<2n

log p ≤ 2n log 2.

Summing over n = 2k, 0 ≤ k ≤ 2m−1 gives

ϑ(2m) =
m−1∑
k=0

ϑ(2 · 2k)− ϑ(2k) ≤
m−1∑
k=0

2k+1 log 2 ≤ 2m+1 log 2.

For 2m−1 < x ≤ 2m we have

ϑ(x) ≤ ϑ(2m) ≤ 2m+1 log 2 = (4 log 2)2m−1 ≤ (4 log 2)x.

[A similar/equivalent estimate for ψ is obtained by considering

S(x) =
∑
n≤x

log n =
∑
n≤x

ψ(x/n) = x log x− x+O(log x)

since ∑
n≤x

log n =

∫ x

1

(
log t+

W (t)

t

)
dt+

1

2
log x ≤ x log x− x+ log x

by Euler-Maclurin summation. We have

S(x)− 2S(x/2) = −
∑
n

(−1)nψ(x/n)

= x log x− x+O(log x)− 2
(x

2
log(x/2)− x

2
+O(log(x/2))

)
= x log 2 +O(log x).



Hence ψ(x) > x log 2 +O(log x) and ψ(x)− ψ(x/2) < x log 2 +O(log x). If r is maximal
such that x/2r ≥ 2 then

ψ(x)− ψ(x/2r) =
r−1∑
i=0

ψ(x/2i)− ψ(x/2i+1) ≤ x2 log 2 + rO(log x) = x log 4 +O((log x)2)

since r = O(log x). Hence

x log 2 +O(log x) < ψ(x) < x log 4 +O((log x)2)

showing ψ(x) � x.]
We relate this to π(x) by noting that for 0 < α < 1 we have

[π(x)− π(xα)] log xα ≤ ϑ(x)− ϑ(xα) ≤ ϑ(x) < (4 log 2)x

so that

π(x) ≤ (4 log 2)x

α log x
+ π(xα) ≤ (4 log 2)x

α log x
+ xα =

x

log x

(
4 log 2

α
+ xα−1 log x

)
≤ 6x

log x

(for instance, choosing α wisely).
For a lower bound, we start with

2n <

(
n+ 1

1

)
·
(
n+ 2

2

)
· . . .

(
n+ n

n

)
=

(
2n

n

)
.

We need the fact (easy to prove) that the largest power of p dividing n!, ordp(n!), is given
by
∑

k≥1bn/pkc. This gives

ordp

(
2n

n

)
=
∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
≤ log(2n)

log p

since each term in the sum is 0 or 1 and for pk > 2n we have b2n/pkc, bn/pkc = 0. Hence

2n <

(
2n

n

)
≤
∏
p≤2n

plog 2n/ log p = (2n)π(2n),

and taking logarithms gives

π(2n) ≥ log 2

2

2n

log(2n)
.

For odd integers we have

π(2n+ 1) ≥ π(2n) ≥ log 2

2

2n

2n+ 1

2n+ 1

log(2n+ 1)

so that

π(x) ≥ x/6

log x

(for instance).



We can relate the asymptotics of π(x) to those of ψ(x), ϑ(x) as follows.

Proposition. ψ(x), ϑ(x) ∼ x if and only if π(x) ∼ x/ log x.

Proof. In one direction we have

ϑ(x) ≤ ψ(x) =
∑
p≤x

⌊
log x

log p

⌋
log p ≤ π(x) log x,

while in the other we have, for 0 < δ < 1,

ψ(x) ≥ ϑ(x) ≥
∑

x1−δ≤p≤x

log p ≥ (1−δ)[π(x)−π(x1−δ)] log x = (1−δ) log x[π(x)+O(x1−δ)].

Hence for all 0 < δ < 1 we have

(1− δ) π(x)

x/ log x
+O(x−δ log x) ≤ ψ(x)

x
,
ϑ(x)

x
≤ π(x)

x/ log x
.

A ‘quick’ proof of the prime number theorem comes from the fact that ζ(s) 6= 0 on
σ ≥ 1 and the following Tauberian theorem.

Theorem (Newman’s Tauberian Theorem). Suppose f(t) is bounded and locally inte-
grable for t ≥ 0 and that

g(z) =

∫ ∞
0

e−ztf(t)dt, <z > 0

extends to a holomorphic funtion on <z ≥ 0. Then∫ ∞
0

f(t)dt

exists.

Proof. Let C be the boundary of

{|z| ≤ R} ∩ {<z ≥ −δ}

where R is large positive and δ > 0 small enough so that g(z) is analytic on C. For

gT (z) =
∫ T

0
f(t)e−ztdt we have

g(0)− gT (0) =
1

2πi

∫
C

(g(z)− gT (z))ezT
(

1 +
z2

R2

)
dz

z
.

On the right semi-cricle C+ we have

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−ztdt

∣∣∣∣ ≤M

∫ ∞
T

|ezt|dt =
MeT<z

<z
,∣∣∣∣ezT (1 +

z2

R2

)
1

z

∣∣∣∣ =
2<z
R2

eT<z,∣∣∣∣ 1

2πi

∫
C+

(g(z)− gT (z))ezT
(

1 +
z2

R2

)
dz

z

∣∣∣∣ ≤ M

R



where M = maxt≥0{|f(t)|}.
On C− = C ∩ {<z ≤ 0} we estimate integrals involving g, gT separately. For C ′− the

left semi-circle of radius R, we have (since gT entire)

1

2πi

∫
C−

gT (z)ezT
(

1 +
z2

R2

dz

z

)
=

1

2πi

∫
C′−

gT (z)ezT
(

1 +
z2

R2

dz

z

)
and estimates

|gT (z)| =
∣∣∣∣∫ T

0

f(t)e−ztdt

∣∣∣∣ ≤M

∫ T

−∞
|e−zt|dt = M

e−T<z

−<z
,∣∣∣∣ezT (1 +

z2

R2

)
1

z

∣∣∣∣ =
−2<z
R2

eT<z (as before),∣∣∣∣∣ 1

2πi

∫
C′−

gT (z)ezT
(

1 +
z2

R2

)
dz

z

∣∣∣∣∣ ≤ M

R
.

For the integral involving g we have∣∣∣∣∣ 1

2πi

∫
C′−

g(z)ezT
(

1 +
z2

R2

)
dz

z

∣∣∣∣∣→ 0, T →∞

since the only dependence on T in the integrand is ezT , which quickly approaches zero
as T →∞.

Hence

lim
T→∞

|g(0)− gT (0)| ≤ 2M

R

for arbitrary R, so that gT (0)→ g(0) as T →∞ as desired.

Theorem (Prime Number Theorem). ϑ(x) ∼ x.

Proof. The function Φ(s) :=
∑

p log p/ps extends meromorphically to σ > 1/2 with a
simple pole at 1 with residue 1 and poles at zeros of ζ(s) since

−ζ
′(s)

ζ(s)
=
∑
n

Λ(n)

ns
=
∑
p

log p

ps − 1
= Φ(s) +

∑
p

log p

ps(ps − 1)

and the last sum converges for σ > 1/2. Because ζ has no zeros in σ ≥ 1, Φ(s)−(s−1)−1

is holomorphic on σ ≥ 1. This along with ϑ(x) = O(x) allows us to apply the Tauberian
theorem to conclude that ∫ ∞

1

ϑ(x)− x
x2

dx

converges as follows. We have

Φ(s) =
∑
p

log p

ps
=

∫ ∞
1

dϑ(x)

xs
= s

∫ ∞
1

ϑ(x)

xs+1
dx = s

∫ ∞
0

e−stϑ(et)dt,∫ ∞
0

(ϑ(et)e−t − 1)e−ztdt =
Φ(z + 1)

z + 1
− 1

z
=: g(z),



so that with f(t) := ϑ(et)e−t − 1 (remember ϑ(x) = O(x) so that f is bounded) we have
the existence of ∫ ∞

1

ϑ(x)− x
x2

dx =

∫ ∞
0

(ϑ(et)e−t − 1)dt =

∫ ∞
0

f(t)dt.

Finally we show that ϑ(x) ∼ x. If not, say ϑ(x) ≥ λx for arbitrarily large x and some
λ > 1 then∫ λx

x

ϑ(t)− t
t2

dt ≥
∫ λx

x

ϑ(x)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt =

∫ λ

1

λ− t
t2

dt > 0

contradicting convergence of the integral for large x and fixed λ.
Similarly, if ϑ(x) ≤ λx for arbitrarily large x and some λ < 1 then∫ x

λx

ϑ(t)− t
t2

dt ≤
∫ λx

x

ϑ(x)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =

∫ 1

λ

λ− t
t2

dt < 0

contradicting convergence of the integral as well.

Another approach is to show ψ(x) ∼ x starting with von Mangoldt’s explicit formula

ψ0(x) = x−
∑
ρ

xρ

ρ
− 1

2
log(1− x−2)− ζ ′(0)

ζ(0)

and using the zero-free region near σ = 1 to control the sum over the non-trivial zeros of
zeta.

Theorem (Prime Number Theorem). ψ(x) ∼ x.

Proof. Let the zeros be denoted by ρ = β + γi. We know that there is a constant c such
that β ≤ 1− c/ log T for |γ| ≤ T , so that

|xρ| = xβ ≤ xe−c log(x)/ log T .

We also have∑
0<γ≤T

1

|ρ|
≤
∑

0<γ≤T

1

γ
=

∫ T

0

dN(t)

t
=
N(t)

T
+

∫ T

0

N(t)

t2
dt� log T +

∫ T

0

t log t

t2
� (log T )2

where N(t)� t log t is the number of zeros in the critical strip with 0 < γ ≤ t. Hence∣∣∣∣∣∣
∑
|γ|≤T

xρ

ρ

∣∣∣∣∣∣� x(log T )2e−c log x/ log T .

Dividing by x and letting T →∞, x→∞ gives ψ(x) ∼ x.



9 Prime Number Theorem in Arithmetic Progres-

sions

We know that for (a, q) = 1, there are infinitely many primes congruent to a modulo q
and in fact we have the following.

Theorem (PNT in Arithmetic Progresions). We have

ϑ(x; a, q) ∼ x

where
ϑ(x; a, q) = φ(q)

∑
p≤x
p≡a(q)

log p.

From this it follows that

π(x; a, q) ∼ 1

φ(q)

x

log x
,

where π(x; a, q) = |{p ≤ x, p ≡ a(q)}|.

Proof. We proceed using Newman’s Tauberian theorem as above. We have ϑ(x; a, q) =
O(x) since

ϑ(x; a, q) ≤ φ(q)ϑ(x) = O(x).

We also know that L(s, χ) 6= 0 on σ ≥ 1.
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