Contents

1 Dirichlet Series and The Riemann Zeta Function 1
2 Primes in Arithmetic Progressions 4
3 Functional equations for $\zeta(s), L(s, \chi) \quad 9$
4 Product Formula for $\xi(s), \xi(s, \chi) \quad 18$
5 A Zero-Free Region and the Density of Zeros for $\zeta(s) \quad 23$
6 A Zero-Free Region and the Density of Zeros for $L(s, \chi) \quad \mathbf{2 5}$
7 Explicit Formula Relating the Primes to Zeros of $\zeta(s) \quad 25$
8 Chebyshev Estimates and the Prime Number Theorem 28
9 Prime Number Theorem in Arithmetic Progressions 33
[Sections 1,2, and 3 are OK - the rest need work/reorganization]

1 Dirichlet Series and The Riemann Zeta Function

Throughout, $s=\sigma+i t$ is a complex variable (following Riemann).
Definition. The Riemann zeta function, $\zeta(s)$, is defined by

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

for $\sigma>1$.
Lemma (Summation by Parts). We have

$$
\sum_{n=p}^{q} a_{n} b_{n}=\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}
$$

where $A_{n}=\sum_{k \leq n} a_{k}$. In particular, if $\sum_{n \geq 1} a_{n} b_{n}$ converges and $A_{n} b_{n} \rightarrow 0$ as $n \rightarrow \infty$ then

$$
\sum_{n \geq 1} a_{n} b_{n}=\sum_{n \geq 1} A_{n}\left(b_{n}-b_{n+1}\right)
$$

Another formulation: if $a(n)$ is a funciton on the integers, $A(x)=\sum_{n \leq x} a(n)$, and f is C^{1} on $[y, x]$ then

$$
\sum_{y<n \leq x} a(n) f(n)=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
$$

Proof.

$$
\begin{aligned}
\sum_{n=p}^{q} a_{n} b_{n} & =\sum_{n=p}^{q}\left(A_{n}-A_{n-1}\right) b_{n}=\sum_{n=p}^{q} A_{n} b_{n}-\sum_{n=p}^{q} A_{n-1} b_{n} \\
& =\sum_{n=p}^{q} A_{n} b_{n}-\sum_{n=p-1}^{q-1} A_{n} b_{n+1}=\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}
\end{aligned}
$$

For the second forumulation, assume y is not an integer and let $N=\lceil y\rceil, M=\lfloor x\rfloor$. We have

$$
\begin{aligned}
\int_{y}^{x} A(t) f^{\prime}(t) d t= & A(N-1) \int_{y}^{N} f^{\prime}(t) d t+A(M) \int_{M}^{x} f^{\prime}(t) d t+\sum_{n=N}^{M-1} A(n) \int_{n}^{n+1} f^{\prime}(t) d t \\
= & {\left[A(N-1) f(N)-A(M) f(M)+\sum_{n=N}^{M-1} A(n)(f(n+1)-f(n))\right] } \\
& +A(M) f(x)-A(N-1) f(y) \\
= & -\sum_{y<n \leq x} a(n) f(n)+A(x) f(x)-A(y) f(y) .
\end{aligned}
$$

If y is an integer, one easily checks that the result still holds.
Yet another version that is useful.
Lemma (Euler-Maclurin Summation). Assume f is C^{1} on $[a, b]$ and let $W(x)=x-$ $\lfloor x\rfloor-1 / 2$. Then

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b}\left(f(x)+W(x) f^{\prime}(x)\right) d x+\frac{1}{2}(f(b)-f(a))
$$

Proof. The right-hand side is

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x+\int_{a}^{b} x f^{\prime}(x) d x-\int_{a}^{b}\lfloor x\rfloor f^{\prime}(x) d x-\frac{1}{2} \int_{a}^{b} f^{\prime}(x) d x+\frac{1}{2}(f(b)-f(a)) \\
& =b f(b)-a f(a)-\int_{a}^{b}\lfloor x\rfloor f^{\prime}(x) d x=b f(b)-a f(a)-\sum_{n=a}^{b-1} n(f(n+1)-f(n)) \\
& =\sum_{a<n \leq b} f(n) .
\end{aligned}
$$

A few lemmas on Dirichlet series $\left(\sum_{n} a_{n} n^{-s}\right)$.
Lemma. If $f(s)=\sum_{n} a_{n} n^{-s}$ converges for $s=s_{0}$ then $f(s)$ converges on $\sigma>\sigma_{0}$ (uniformly on compacta).

Proof. We have $\sum_{n} a_{n} n^{-s}=\sum_{n} a_{n} n^{-\left(s-s_{0}\right)} n^{-s_{0}}$. Let $A_{k}\left(s_{0}\right)=\sum_{n=1}^{k} a_{n} n^{-s_{0}}$ and sum the tail of the series by parts

$$
\sum_{n=M}^{N} \frac{a_{n}}{n^{s_{0}}} \frac{1}{n^{s-s_{0}}}=\sum_{n=M}^{N-1} A_{n}\left(\frac{1}{n^{s-s_{0}}}-\frac{1}{(n+1)^{s-s_{0}}}\right)-\frac{A_{N}}{N^{s-s_{0}}}+\frac{A_{M-1}}{M^{s-s_{0}}}
$$

We have

$$
\left|\frac{1}{n^{s-s_{0}}}-\frac{1}{(n+1)^{s-s_{0}}}\right|=\left|\left(s-s_{0}\right) \int_{n}^{n+1} \frac{1}{x^{s-s_{0}+1}} d x\right| \leq \frac{\left|s-s_{0}\right|}{n^{\sigma-\sigma_{0}+1}}
$$

so that the tails go to zero uniformly.
Lemma. If $\left|A_{N}\right|=\left|\sum_{n=1}^{n} a_{n}\right|<C N^{\sigma_{0}}$ then $f(s)=\sum_{n} a_{n} n^{-s}$ converges for $\sigma>\sigma_{0}$.
Proof. Summation by parts again:

$$
\begin{aligned}
\left|\sum_{n=M}^{N} a_{n} n^{-s}\right| & =\left|\sum_{n=M}^{N-1} A_{n}\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)+\frac{A_{N}}{N^{s}}-\frac{A_{M-1}}{M^{s}}\right| \\
& =\left|\sum_{n=M}^{N} s \int_{n}^{n+1} \frac{A_{n}}{x^{s}} d x+\frac{A_{N}}{N^{s}}-\frac{A_{M-1}}{M^{s}}\right| \\
& \leq C\left(\sum_{n=M}^{N}|s| \int_{n}^{n+1} \frac{d x}{x^{\sigma-\sigma_{0}+1}}+\frac{1}{N^{\sigma-\sigma_{0}}}+\left(\frac{M-1}{M}\right)^{\sigma_{0}} \frac{1}{M^{\sigma-\sigma_{0}}}\right)
\end{aligned}
$$

which goes to zero.
Proposition. The Riemann zeta function can be continued to $\sigma>0$ with a simple pole at $s=1, \operatorname{Res}_{s=1} \zeta(s)=1$.
Proof.

$$
\begin{aligned}
\zeta(s) & =\sum_{n} \frac{1}{n^{s}}=\sum_{n} n\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right) \\
& =\sum_{n} n s \int_{n}^{n+1} x^{-s-1} d x=s \int_{1}^{\infty}\lfloor x\rfloor x^{-s-1} d x \\
& =s \int_{1}^{\infty}(x-\{x\}) x^{-s-1} d x=\frac{s}{s-1}-s \int_{1}^{\infty}\{x\} x^{-s-1} d x \\
& =\frac{1}{s-1}+1+s \int_{1}^{\infty}\{x\} x^{-s-1} d x
\end{aligned}
$$

where the last integral converges for $\sigma>0$.
We can do better by writing

$$
\begin{aligned}
\zeta(s) & =s \int_{1}^{\infty}\lfloor x\rfloor x^{-s-1} d x=s \int_{1}^{\infty}(x-1 / 2-(\{x\}-1 / 2)) x^{-s-1} d x \\
& =\frac{s}{s-1}-\frac{1}{2}-s \int_{1}^{\infty} W(x) x^{-s-1} d x \\
& =\frac{s}{s-1}-\frac{1}{2}+s(s+1) \int_{1}^{\infty}\left(\int_{1}^{x} W(y) d y\right) x^{-s-2} d x
\end{aligned}
$$

where $W(x)=x-\lfloor x\rfloor-1 / 2$ is the "sawtooth" function. Since $\int_{1}^{x} W(y) d y$ is bounded for all x, the last integral converges for $\sigma>-1$. This also shows that $\zeta(0)=-1 / 2$.
[Another way to get this continuation is by considering

$$
\begin{aligned}
\zeta(s) & =2 \zeta(s)-\zeta(s)=2 \sum_{k=1}^{\infty}(2 k)^{-s}+2 \sum_{k=1}^{\infty}(2 k-1)^{-s}-\zeta(s) \\
& =2^{1-s} \zeta(s)-\sum_{n=1}^{\infty}(-1)^{n} n^{-s} \\
& \Rightarrow \zeta(s)=\frac{\sum_{n}(-1)^{n} n^{-s}}{2^{1-s}-1}
\end{aligned}
$$

where the sum on the right-hand side converges for $\sigma>0$, clear for s real and Dirichlet series converge on half-planes.]

Proposition. The Riemann zeta function does not vanish on $\sigma \geq 1$.
Proof. For $\sigma>1$ we have the Euler product, which is non-zero (any convergent product, $\prod_{n}\left(1+a_{n}\right), \sum_{n}\left|a_{n}\right|<\infty,\left|a_{n}\right|<1$ is non-zero). Along the line $\sigma=1$, we use a continuity argument, starting with the identity

$$
3+4 \cos \theta+\cos 2 \theta=2(1+\cos \theta)^{2} \geq 0
$$

Taking the logarithm of the Euler product, for $\sigma>1$ we have

$$
\Re \log \zeta(s)=\Re \sum_{m, p} \frac{1}{m} e^{-m(\sigma+i t) \log p}=\sum_{m, p} \frac{1}{m} e^{-\sigma m \log p} \cos (m t \log p)
$$

Taking $\theta=m t \log p$ in the inequality above, multiplying by $e^{-\sigma m \log p} / m$, and summing over m, p gives

$$
3 \log \zeta(\sigma)+4 \Re \log \zeta(\sigma+i t)+\Re \log \zeta(\sigma+2 i t) \geq 0
$$

and exponentiating gives

$$
\zeta^{3}(\sigma)\left|\zeta^{4}(\sigma+i t) \zeta(\sigma+2 i t)\right| \geq 1
$$

Now, if $\zeta(1+i t)=0$, taking limits as $\sigma \rightarrow 1$ above gives a contradiction, the quadruple zero cancels the triple pole and $\zeta(1+2 i t)$ remains bounded. Hence there are no zeros on $\sigma=1$ as claimed.

2 Primes in Arithmetic Progressions

Proposition. The sum of the reciprocals of the primes diverges,

$$
\sum_{p} 1 / p=\infty
$$

Proof. Taking the logarithm of the Euler product for $\zeta(s)(s>1$ real $)$ we get

$$
\log (\zeta(s))=-\sum_{p} \log \left(1-p^{-s}\right)=\sum_{n, p} \frac{1}{n p^{n s}}
$$

using the power series expansion

$$
-\log (1-z)=\sum_{n} \frac{z^{n}}{n}
$$

The sum over $n>1$ converges

$$
\sum_{n, p} \frac{1}{n} p^{-n s}=\sum_{p} p^{-s}+O(1)
$$

since

$$
\sum_{p, n \geq 2} \frac{1}{n} p^{-n s}<\sum_{p} \frac{p^{-2}}{1-p^{-s}}<\sum_{n} n^{-2}<\infty
$$

More specifically, although we don't need it and the above is merely motivational, we have

Theorem (Mertens). $\sum_{p \leq x} 1 / p=C+\log \log x+O(1 / \log x)$ with $C=$?
Proof. Let $S(x)=\sum_{n \leq x} \log n=\log (\lfloor x\rfloor!)=x \log x-x+O(\log x)$. Then

$$
S(x)=\sum_{l m \leq x} \Lambda(l)=\sum_{l \leq x} \Lambda(l)\left\lfloor\frac{x}{l}\right\rfloor=x \sum_{l \leq x} \frac{\Lambda(l)}{l}+O(\psi(x))
$$

Since $\psi(x) \asymp x$ (see the prime number theorem section) we have

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

Since $\sum_{p, \alpha \geq 2} \Lambda(p) / p^{\alpha}<\infty$, we have

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Now use summation by parts

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p} & =\sum_{p \leq x} \frac{\log p}{p} \frac{1}{\log p} \\
& =\frac{1}{\log x} \sum_{p \leq x} \frac{\log p}{p}+\int_{2}^{x} \frac{\sum_{p \leq t} \frac{\log p}{p}}{t(\log t)^{2}} d t \\
& =1+O(1 / \log x)+\int_{2}^{x} \frac{1}{t \log t} d t+O\left(\int_{2}^{x} \frac{1}{t(\log t)^{2}}\right) \\
& =C+\log (\log x)+O(1 / \log x)
\end{aligned}
$$

for some constant C.

Definition. A Dirichlet character to the modulus $q, \chi: \mathbb{Z} \rightarrow \mathbb{C}$, is induced by a homomorphism $(\mathbb{Z} / q \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$and defined to be zero for $(n, q)>1$. They form an abelian group under pointwise multiplication isomorphic to $(\mathbb{Z} / q \mathbb{Z})^{\times}$with identity χ_{0} (the principal character) and $\chi^{-1}=\bar{\chi}$. Also note that Dirichlet characters are completely multiplicative, $\chi(a b)=\chi(a) \chi(b)$.

Lemma (Orthogonality relations).

$$
\begin{aligned}
\frac{1}{\phi(q)} \sum_{\chi} \chi(a) & =\left\{\begin{array}{cc}
1 & a \equiv 1(q) \\
0 & \text { else }
\end{array}\right. \\
\frac{1}{\phi(q)} \sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{\times}} \chi(a) & =\left\{\begin{array}{cc}
1 & \chi=\chi_{0} \\
0 & \text { else }
\end{array}\right.
\end{aligned}
$$

Definition. The Dirichlet L-series associated to a character $\chi, L(s, \chi)$, is defined by

$$
L(s, \chi)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1}
$$

for $\sigma>1$.
For future reference we note that the series on the left actually converges on $\sigma>0$ for non-principal χ and that $L\left(s, \chi_{0}\right)$ can be continued to $\sigma>0$ with a simple pole at $s=1$. Using summation by parts (cf. the section on the Riemann zeta function) we have, for non-principal χ

$$
\sum_{n} \frac{\chi(n)}{n^{s}}=\sum_{n}\left(\sum_{k=1}^{n} \chi(k)\right)\left(n^{-s}-(n+1)^{-s}\right)=s \int_{1}^{\infty}\left(\sum_{n \leq x} \chi(n)\right) x^{-s-1} d x
$$

with $\sum_{n \leq x} \chi(n) \leq \phi(q)$, whereas for χ_{0} we have

$$
L\left(s, \chi_{0}\right)=\zeta(s) \prod_{p \mid q}\left(1-p^{-s}\right)
$$

and the claim follows from the properties of the Riemann zeta function.
Theorem (Primes in Arithmetic Progressions). For $(a, q)=1$ there are infinitely many primes p such that $p \equiv a(q)$. More precisely, the sum of the reciprocals of such primes diverges, $\sum_{p \equiv a(q)} 1 / p=\infty$.

Proof. Taking the logarithm of the Euler product for $L(s, \chi)$ gives (similar to the above)

$$
\log (L(s, \chi))=-\sum_{p} \log \left(1-\chi(p) p^{-s}\right)=\sum_{n, p} \frac{\chi(p)}{n p^{n s}}=\sum_{p} \frac{\chi(p)}{p^{s}}+O(1)
$$

Multiplying by $\bar{\chi}(a) / \phi(q)$ and summing over all characters moduluo q selects primes congruent to a modulo q (using orthogonality)

$$
\frac{1}{\phi(q)} \sum_{\chi} \bar{\chi}(a) \log (L(s, \chi))=\sum_{p} p^{-s} \sum_{\chi} \chi\left(p a^{-1}\right)+O(1)=\sum_{p \equiv a(q)} \frac{1}{p^{s}}+O(1)
$$

On the left hand side, the term corresponding to the prinipal character diverges. If $L(1, \chi) \neq 0$ for the non-principal characters (we know that $L(1, \chi)$ is well-defined) then letting $s \rightarrow 1^{+}$gives the divergence of the sum on the right-hand side,

$$
\sum_{p \equiv a(q)} \frac{1}{p}=\infty
$$

indicating the existence of infinitely many primes in a given arithmetic progression $a \bmod q$.

To validate the proof above, we must prove the non-vanishing of $L(1, \chi)$ for nonprincipal characters. Three proofs are provided below.
Theorem (Non-vanishing of $L(1, \chi)$). For a non-principal character χ, we have

$$
L(1, \chi) \neq 0 .
$$

(Proof 1, de la Vallée Poussin). First note that for $s>1$ real, we have

$$
F(s)=\prod_{\chi} L(s, \chi) \geq 1
$$

since its logarithm is positive

$$
\log (F(s))=\sum_{\chi, p, n} \frac{\chi(p)}{n p^{n s}}=\sum_{p \equiv 1(q), n} \frac{1}{n p^{n s}}>0
$$

If $L(1, \chi)=0$ for a complex character $\chi \neq \bar{\chi}$, then $L(1, \bar{\chi})=0$ as well. From this we see that $F(s)$ has a zero at $s=1$ (exactly one pole from the principal character, and at least two zeros from $\chi, \bar{\chi}$), a contradiction.

So we need only consider real characters. Given a real character χ with $L(1, \chi)=0$, consider the auxiliary function

$$
\psi(s)=\frac{L(s, \chi) L\left(s, \chi_{0}\right)}{L\left(2 s, \chi_{0}\right)}
$$

which is analytic on $\sigma>1 / 2$ with $\lim _{s \rightarrow 1 / 2^{+}} \psi(s)=0$. Consider the product expansion for ψ

$$
\begin{aligned}
\psi(s) & =\prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1}\left(1-\chi_{0}(p) p^{-s}\right)^{-1}\left(1-\chi_{0}(p) p^{-2 s}\right) \\
& =\prod_{p \nmid q} \frac{1-p^{-2 s}}{\left(1-p^{-s}\right)\left(1-\chi(p) p^{-s}\right)}=\prod_{\chi(p)=1} \frac{1+p^{-s}}{1-p^{-s}} \\
& =\prod_{\chi(p)=1}\left(1+\sum_{n=1}^{\infty} 2 p^{-n s}\right) .
\end{aligned}
$$

It follows that $\psi(s)=\sum_{n} a_{n} n^{-s}$ is a Dirichlet series with positive coefficients and $a_{0}=1$. Now expand ψ as a power series around $s=2, \psi(s)=\sum_{m} b_{m}(s-2)^{m}$, and note that the radius of convergence is at least $3 / 2$ (the first singularity is at $s=1 / 2$). The coefficients are given by

$$
b_{m}=\frac{\psi^{(m)}(2)}{m!}=\frac{1}{m!} \sum_{n} a_{n}(-\log n)^{m} n^{-2}=(-1)^{m} c_{m}
$$

for some non-negative c_{m}. Hence

$$
\psi(s)=\sum_{m} c_{m}(2-s)^{m}
$$

with $c_{m} \geq 0$ and $c_{0}=\psi(2)=\sum_{n} a_{n} n^{-2} \geq a_{0}=1$. From this it follows that $\psi(s) \geq 1$ for $s \in(1 / 2,2)$, contradicting $\psi(s) \rightarrow 0$ as $s \rightarrow 1 / 2^{+}$. Therefore $L(s, \chi) \neq 0$ as desired.
(Proof 2, taken from Serre). We reconsider the function $F(s)$ from above, and claim an equality

$$
F(s)=\prod_{\chi} L(s, \chi)=\prod_{p, \chi}\left(1-\chi(p) p^{-s}\right)^{-1}=\prod_{p \nmid q}\left(1-p^{-f(p) s}\right)^{-g(p)}
$$

where $f(p)$ is the order of p modulo q and $g(p)=\phi(q) / f(p)$. [Note that $F(s)$ is the Dedekind zeta function of the q th cyclotomic field, away from the ramified primes.] By definition, $\chi(p)$ is an f th root of unity and for each choice of such a root, there are g choices to extend the character from the subgroup of $(\mathbb{Z} / q \mathbb{Z})^{\times}$generated by p to the entire group. Hence

$$
\prod_{\chi}(1-\chi(p) T)=\left(1-T^{f}\right)^{g}
$$

If $L(1, \chi)=0$ for some non-principal χ, then $F(s)$ is analytic at for $\sigma>0$ (the L-series for non-principal χ already are, and the simple pole of $L\left(s, \chi_{0}\right)$ at $s=1$ is balanced by the supposed zero of $L(s, \chi)$ at $s=1$). However, looking at the product expansion, for $s>0$ we have

$$
\left(1-p^{-f s}\right)^{-g}=\left(\sum_{k} p^{-k f s}\right)^{g} \geq \sum_{k} p^{-\phi(q) k s}=\left(1-p^{-\phi(q) s}\right)^{-1}
$$

(taking diagonal terms and noting $f g=\phi(q)$) so that

$$
F(s) \geq \prod_{p \nmid q}\left(1-p^{-\phi(q) s}\right)^{-1}=\zeta(\phi(q) s) \prod_{p \mid q}\left(1-p^{-\phi(q) s}\right)
$$

which diverges at $s=1 / \phi(q)$, a contradiction. Therefore, there can be no χ with $L(1, \chi)=0$.
(Proof 3, Monsky). Here is an elementary proof for the non-vanishing of $L(1, \chi)$ for nonprincipal real χ. Let $c_{n}=\sum_{d \mid n} \chi(d)$. Note that $c_{n} \geq 0$ since c_{n} is multiplicative and

$$
c_{p^{a}}=1+\chi(p)+\chi(p)^{2}+\cdots+\chi(p)^{a} \geq 0
$$

Also note that $\sum_{n} c_{n}=\infty$ since $c_{p^{a}}=1$ for any prime dividing q. Now consider the function (convergent on $[0,1)$)

$$
f(t)=\sum_{n} \chi(n) \frac{t^{n}}{1-t^{n}}=\sum_{n} \sum_{d} \chi(n) t^{n d}=\sum_{n} t^{n} c_{n}
$$

which we showed satisfies $f(t) \rightarrow \infty$ as $t \rightarrow 1^{-}$. If $\sum_{n} \chi(n) / n=0$ then $(t \in[0,1))$

$$
-f(t)=\sum_{n}\left(\frac{\chi(n)}{n} \frac{1}{1-t}-\frac{\chi(n) t^{n}}{1-t^{n}}\right)=\sum_{n} \chi(n)\left(\frac{1}{n(1-t)}-\frac{t^{n}}{1-t^{n}}\right)=: \sum_{n} \chi(n) b_{n}
$$

Note that $\sum_{n \leq x} \chi(n) \leq \phi(q)$ and that $b_{n} \rightarrow 0$. If we can show that the b_{n} are decreasing, then the series converges for all $t \in[0,1$) (summation by parts!) contradicting $f(t) \rightarrow \infty$ as $t \rightarrow 1^{-}$. To this end, we have

$$
\begin{aligned}
(1-t)\left(b_{n}-b_{n+1}\right) & =\frac{1}{n}-\frac{1}{n+1}-\frac{t^{n}}{1+t+\cdots+t^{n-1}}+\frac{t^{n+1}}{1+t+\cdots+t^{n}} \\
& =\frac{1}{n(n+1)}-\frac{t^{n}}{\left(1+t+\cdots+t^{n-1}\right)\left(1+t+\cdots+t^{n}\right)} .
\end{aligned}
$$

By the arithmetic-geometric mean inequality, we have $(t \in[0,1))$

$$
\begin{gathered}
\frac{1}{n}\left(1+t+\cdots+t^{n-1}\right) \geq\left(t^{n(n-1) / 2}\right)^{1 / n} \geq t^{n / 2} \\
\frac{1}{n+1}\left(1+t+\cdots+t^{n}\right) \geq\left(t^{n(n+1) / 2}\right)^{1 /(n+1)} \geq t^{n / 2}
\end{gathered}
$$

Hence

$$
\begin{aligned}
(1-t)\left(b_{n+1}-b_{n}\right) & =\frac{1}{n(n+1)}-\frac{t^{n}}{\left(1+t+\cdots+t^{n-1}\right)\left(1+t+\cdots+t^{n}\right)} \\
& \geq \frac{1}{n(n+1)}-\frac{t^{n}}{t^{n} n(n+1)}=0
\end{aligned}
$$

and the theorem follows.
[Note: add some kind of density statement.]

3 Functional equations for $\zeta(s), L(s, \chi)$

Lemma (Poisson Summation). Suppose f is "nice" and decays sufficiently fast at infinity, so that the periodization $F(x)=\sum_{n \in \mathbb{Z}} f(x+n)$ converges and is equal to its Fourier series. Then

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n) .
$$

where $\hat{f}(x)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i t x} d t$.

Proof. We have

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} f(n) & =F(0)=\sum_{n \in \mathbb{Z}}\left(\int_{0}^{1} F(x) e^{-2 \pi i n x} d x\right) e^{2 \pi i n 0}=\sum_{n \in \mathbb{Z}} \int_{0}^{1}\left(\sum_{m \in \mathbb{Z}} f(x+m)\right) e^{-2 \pi i n x} d x \\
& =\sum_{n, m \in \mathbb{Z}} \int_{m}^{m+1} f(x) e^{-2 \pi i n x} d x=\sum_{n \in \mathbb{Z}} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i n x} d x=\sum_{n \in \mathbb{Z}} \hat{f}(n)
\end{aligned}
$$

Lemma. The function

$$
\theta(x)=\sum_{n=-\infty}^{\infty} e^{-n^{2} \pi x}
$$

satisfies the functional equation

$$
\theta(1 / x)=x^{1 / 2} \theta(x)
$$

Proof. Apply Poisson summation to $f(z)=e^{-\pi z^{2} / x}$ with $x>0$ fixed. We have

$$
\begin{aligned}
\hat{f}(n) & =\int_{-\infty}^{\infty} e^{-\pi z^{2} / x} e^{-2 \pi i n z} d z \quad\left(z \mapsto x^{1 / 2} z\right) \\
& =x^{1 / 2} \int_{-\infty}^{\infty} e^{-\pi\left(z^{2}+2 i n x^{1 / 2} z\right)} d z=x^{1 / 2} e^{-\pi n^{2} x} \int_{-\infty}^{\infty} e^{-\pi\left(z+i n x^{1 / 2}\right)^{2}} d z \\
& =x^{1 / 2} e^{-\pi n^{2} x}
\end{aligned}
$$

since the last integral is 1 , comparing it to

$$
\left(\int_{-\infty}^{\infty} e^{-\pi z^{2}} d z\right)^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\pi r^{2}} r d r d \theta=1
$$

say by integrating around a long rectangle along the real axis. [Or note that $g(z)=e^{-\pi z^{2}}$ is its own Fourier transform so that $\hat{f}(z)=g(z / \sqrt{x})^{\wedge}=\sqrt{x} \hat{g}(\sqrt{x} z)=\sqrt{x} g(\sqrt{x} z)=$ $\sqrt{x} e^{-\pi z^{2} x}$.] Summing over n we get

$$
\theta(1 / x)=\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n)=x^{1 / 2} \theta(x) .
$$

Theorem (Functional equation for $\zeta(s)$). The equation

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(x^{s / 2}+x^{(1-s) / 2}\right) \omega(x) \frac{d x}{x}
$$

(where $\omega(x)=\sum_{n=1}^{\infty} e^{-n^{2} \pi x}=(\theta(x)-1) / 2$) gives a continuation of $\zeta(s)$ to the whole plane. The expression on the right is invariant under $s \leftrightarrow 1-s$, so that

$$
\xi(s):=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\xi(1-s)
$$

and $\xi(s)$ is entire.

Proof. We start with the gamma function (say for $\sigma>1$)

$$
\Gamma(s / 2)=\int_{0}^{\infty} e^{-x} x^{s / 2-1} d x
$$

and make a change of variable, $x=n^{2} \pi t$ to obtain

$$
n^{-s} \pi^{-s / 2} \Gamma(s / 2)=\int_{0}^{\infty} e^{-n^{2} \pi t} t^{s / 2-1} d t
$$

Sum over n and interchange limits ($\sum_{n} \int_{0}^{\infty} e^{-n^{2} \pi t} t^{s / 2-1} d t$ converges uniformly for $\sigma>0$) to obtain

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} \omega(t) t^{s / 2-1} d t
$$

Split the integral at $t=1$ and use the functional equation for $\theta(t)$

$$
\begin{aligned}
\omega(1 / t) & =\frac{1}{2}(\theta(1 / t)-1)=\frac{1}{2}\left(t^{1 / 2} \theta(t)-1\right) \\
& =\frac{1}{2}\left(t^{1 / 2}(2 \omega(t)+1)-1\right)=-\frac{1}{2}+\frac{t^{1 / 2}}{2}+t^{1 / 2} \omega(t)
\end{aligned}
$$

to obtain

$$
\begin{aligned}
n^{-s} \pi^{-s / 2} \Gamma(s / 2) & =\int_{0}^{\infty} \omega(t) t^{s / 2-1} d t=\int_{0}^{1} \omega(t) t^{s / 2-1} d t+\int_{1}^{\infty} \omega(t) t^{s / 2-1} d t \\
(t \mapsto 1 / t) & =\int_{1}^{\infty}\left[\left(-\frac{1}{2}+\frac{t^{1 / 2}}{2}+t^{1 / 2} \omega(t)\right) t^{-s / 2+1}\right] \frac{1}{t^{2}} d t+\int_{1}^{\infty} \omega(t) t^{s / 2-1} d t \\
& =-\frac{1}{s}+\frac{1}{s-1}+\int_{1}^{\infty}\left[\omega(t) t^{-s / 2-1 / 2}+\omega(t) t^{s / 2-1}\right] d t \\
& =\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(t^{-s / 2-1 / 2}+t^{s / 2-1}\right) \omega(t) d t \\
& =\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(t^{(1-s) / 2}+t^{s / 2}\right) \omega(t) \frac{d t}{t}
\end{aligned}
$$

Note that the last integral converges for all s.
Here is another version/proof of the functional equation for $\zeta(s)$.
Theorem. The Riemann zeta function satisfies

$$
\zeta(s)=2^{s} \pi^{s-1} \Gamma(s-1) \sin (\pi s / 2) \zeta(1-s)
$$

Proof. Start with the gamma integral, make a change of variable $y=n x$

$$
\Gamma(s)=\int_{0}^{\infty} y^{s-1} e^{-y} d y=n^{s} \int_{0}^{\infty} x^{s-1} e^{-n x} d x
$$

divide by n^{s} and sum over n to obtain

$$
\Gamma(s) \zeta(s)=\sum_{n} \int_{0}^{\infty} x^{s-1} e^{-n x} d x=\int_{0}^{\infty} x^{s-1}\left(\sum_{n} e^{-n x}\right) d x=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

Consider the contour integral

$$
I(s)=\int_{C} \frac{z^{s-1}}{e^{z}-1} d z
$$

where C goes from $+\infty$ just above the real axis, circles the origin once (avoiding non-zero roots of $e^{z}-1$), and returns to $+\infty$ just below the real axis. If C_{ρ} is the circle around the origin and $z=\rho e^{i \theta}$, then for $\sigma>1$ we have

$$
\left|\int_{C_{\rho}} \frac{z^{s-1}}{e^{z}-1} d z\right| \leq 2 \pi \rho \frac{\rho^{\sigma-1}}{\left|\sum_{n \geq 1} \rho^{n} e^{i n \theta} / n!\right|}=\frac{2 \pi \rho^{\sigma-1}}{\left|e^{i \theta}+\rho(\ldots)\right|} \rightarrow 0 \text { as } \rho \rightarrow 0
$$

Thus

$$
\begin{aligned}
I(s) & =-\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x+\int_{0}^{\infty} \frac{e^{2 \pi i(s-1)} x^{s-1}}{e^{x}-1} d x=\left(e^{2 \pi i(s-1)}-1\right) \int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x \\
& =\left(e^{2 \pi i(s-1)}-1\right) \Gamma(s) \zeta(s)=\left(e^{2 \pi i(s-1)}-1\right) \frac{\pi}{\sin (\pi s) \Gamma(1-s)} \zeta(s) \\
& =\zeta(s) \frac{2 \pi i e^{\pi i s}}{\Gamma(1-s)}
\end{aligned}
$$

(using the identity $\Gamma(s) \Gamma(1-s)=\pi / \sin (\pi s))$ so that

$$
\zeta(s)=e^{-i \pi s} \Gamma(1-s) \frac{1}{2 \pi i} \int_{C} \frac{z^{s-1}}{e^{z}-1} d z
$$

To get the functional equation, consider the contour C_{n} starting at $+\infty$ just above the real axis, going around the square defined by the vertices $\{(2 n+1) \pi(\pm 1 \pm i)\}$, and returning to $+\infty$ just below the real axis. We use residues $\left(\left(e^{z}-1\right)^{-1}\right.$ has simple poles with residue 1 at $2 \pi i k, k \in \mathbb{Z}$) to calculate

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{C_{n}-C} \frac{z^{s-1}}{e^{z}-1} d z & =\sum_{k=1}^{n}\left[(2 \pi i k)^{s-1}+(-2 \pi i k)^{s-1}\right]=\sum_{k=1}^{n}(2 \pi k)^{s-1}\left(i^{s-1}+(-i)^{s-1}\right) \\
& =e^{(s-1) \pi i} 2^{s} \pi^{s-1} \cos \left(\frac{\pi(s-1)}{2}\right) \sum_{k=1}^{n} k^{s-1}\left(\text { note }-i=e^{3 \pi i / 2}\right) \\
& =e^{(s-1) \pi i} 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \sum_{k=1}^{n} k^{s-1}
\end{aligned}
$$

This gives us

$$
\begin{aligned}
I(s) & =\int_{C} \frac{z^{s-1}}{e^{z}-1} d z=\int_{C_{n}} \frac{z^{s-1}}{e^{z}-1} d z-\int_{C_{n}-C} \frac{z^{s-1}}{e^{z}-1} d z \\
& =\int_{C_{n}} \frac{z^{s-1}}{e^{z}-1} d z-i e^{(s-1) \pi i} 2^{s+1} \pi^{s} \sin \left(\frac{\pi s}{2}\right) \sum_{k=1}^{n} k^{s-1} .
\end{aligned}
$$

Note that $\int_{C_{n}} \frac{z^{s-1}}{e^{z}-1} d z \rightarrow 0$ as $n \rightarrow \infty$ to get the functional equation by taking the limit $n \rightarrow \infty$ above

$$
\begin{aligned}
I(s) & =\zeta(s) \frac{2 \pi i e^{\pi i s}}{\Gamma(1-s)}=-i e^{(s-1) \pi i} 2^{s+1} \pi^{s} \sin \left(\frac{\pi s}{2}\right) \zeta(1-s) \\
& \Rightarrow \zeta(s)=2^{s} \pi^{s-1} \Gamma(s-1) \sin (\pi s / 2) \zeta(1-s)
\end{aligned}
$$

An easy consequence of the above work is the value of $\zeta(s)$ at non-negative integers and at positive even integers. From the integral representation of $\zeta(s)$ above, we have, for $n \geq 0$,

$$
\begin{aligned}
\zeta(-n) & =e^{n \pi i} \Gamma(n+1) \frac{1}{2 \pi i} \int_{C} \frac{z^{-n-1}}{e^{z}-1} d z \\
& =(-1)^{n} n!\frac{1}{2 \pi i} \int_{C} z^{-n-2}\left(\sum_{n} \frac{B_{n}}{n!} z^{n}\right) d z \\
& =(-1)^{n} n!\frac{B_{n+1}}{(n+1)!}=(-1)^{n} \frac{B_{n+1}}{n+1}
\end{aligned}
$$

where the Bernoulli numbers, B_{n} come from the coefficients of the Taylor series

$$
\frac{z}{e^{z}-1}=\sum_{n} \frac{B_{n}}{n!} z^{n}
$$

For instance

$$
\zeta(0)=-\frac{1}{2}, \zeta(-1)=-\frac{1}{12}, \zeta(-3)=\frac{1}{120}, \text { and } \zeta(-2 n)=0 \text { for } n \geq 1
$$

Using the functional equation, we get, for $n \geq 1$ odd (else we get $0=0$ below)

$$
\begin{aligned}
(-1)^{n} \frac{B_{n+1}}{n+1} & =\zeta(-n)=2^{-n} \pi^{-n-1} \sin (-n \pi / 2) \zeta(1+n) \Gamma(1+n) \\
& \Rightarrow \zeta(2 m)=\frac{B_{2 m}}{(2 m)!} 2^{2 m-1} \pi^{2 m}(-1)^{m+1}
\end{aligned}
$$

For instance

$$
\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945} .
$$

We now move on to the functional equation for $L(s, \chi)$ where χ is primitive, i.e. q is the smallest period of χ in that there does not exist a divisor d of q and a character χ^{\prime} modulo d such that χ is given by the composition

$$
(\mathbb{Z} / q \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / d \mathbb{Z})^{\times} \xrightarrow{\chi^{\prime}} \mathbb{C}^{\times}
$$

Definition. A Gauss sum $\tau(\chi)$ associated to a character χ of modulus q is

$$
\tau(\chi)=\sum_{m=1}^{q} \chi(m) e^{2 \pi i m / q}
$$

More generally, define

$$
\tau(\chi, z)=\sum_{m=1}^{q} \chi(m) e^{2 \pi i m z / q}
$$

Lemma. If χ is primitive, we have

$$
\chi(n)=\frac{1}{\tau(\bar{\chi})} \sum_{m} \bar{\chi}(m) e^{2 \pi i m n / q}=\frac{\tau(\bar{\chi}, n)}{\tau(\bar{\chi})}
$$

and $|\tau(\chi)|^{2}=q$.
Proof. If $(n, q)=1$ we have
$\chi(n) \tau(\bar{\chi})=\chi(n) \sum_{m} \bar{\chi}(m) e^{2 \pi i m / q}=\sum_{m} \bar{\chi}\left(m n^{-1}\right) e^{2 \pi i m n^{-1} n / q}=\sum_{k} \bar{\chi}(k) e^{2 \pi i k n / q}=\tau(\bar{\chi}, n)$
where $k=m n^{-1}$ modulo q, whether or not χ is primitive. The last expression also holds for $(n, q)=d>1$ if χ is primitive (in which case both sides are zero). It cannot be the case that χ is trivial on the kernel $(\mathbb{Z} / q \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / d \mathbb{Z})^{\times}$else we extend from the image to a character $\chi^{\prime}:(\mathbb{Z} / d \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$and χ is not primitive. Hence there is a b prime to q and congruent to 1 modulo d with $\chi(b) \neq 1$, in which case $b n \equiv n(q)$ since

$$
b-1=l d=l \frac{q}{(n, q)} \Rightarrow n(b-1)=\frac{n l}{(n, q)} q .
$$

Therefore

$$
\tau(\chi, n)=\sum_{a} \chi(a) e^{2 \pi i a n / q}=\sum_{a} \chi(a b) e^{2 \pi i a b n / q}=\chi(b) \sum_{a} \chi(a) e^{2 \pi i a n / q}=\chi(b) \tau(\chi, n)
$$

with $\chi(b) \neq 1$ so that $\tau(\chi, n)=0$ as desired.
Finally, we show that for χ primitive, $|\tau(\chi)|=q^{1 / 2}$. Using the expression above we have

$$
\begin{aligned}
\phi(q)|\tau(\bar{\chi})|^{2} & =\sum_{n}|\chi(n)|^{2}|\tau(\bar{\chi})|^{2}=\sum_{n, k, l} \chi(k) \bar{\chi}(l) e^{2 \pi i(l-k) n / q} \\
& =\sum_{k=l} \sum_{n}|\chi(k)|^{2}+\sum_{k \neq l} \chi(k) \bar{\chi}(l) \sum_{n} e^{2 \pi i(l-k) n / q} \\
& =q \phi(q)+0,
\end{aligned}
$$

and $|\tau(\chi)|^{2}=q$ as desired. Hence we can divide by $\tau(\chi)$ and the lemma follows.
We need functional equations similar to that of $\theta(1 / x)=x^{1 / 2} \theta(x)$ used above.

Proposition (Functional equations for ψ_{0}, ψ_{1}). Given a primitive character χ of modulus q, define ψ_{0}, ψ_{1} (for $\chi(-1)=1$ or -1) by

$$
\psi_{0}(\chi, x)=\sum_{n \in \mathbb{Z}} \chi(n) e^{-n^{2} \pi x / q}, \psi_{1}(\chi, x)=\sum_{n \in \mathbb{Z}} n \chi(n) e^{-n^{2} \pi x / q} .
$$

These functions satisfy the functional equations

$$
\psi_{0}(\bar{\chi}, 1 / x)=(x / q)^{1 / 2} \tau(\bar{\chi}) \psi_{0}(\chi, x), \psi_{1}(\bar{\chi}, 1 / x)=-i x^{3 / 2} q^{-1 / 2} \tau(\bar{\chi}) \psi_{1}(\chi, x)
$$

Proof. Define functions

$$
f(z, x)=e^{-\pi z^{2} / x}, f_{0}(z, x)=e^{-\pi(q z+b)^{2} /(q x)}, f_{1}(z, x)=(q z+b) e^{-\pi(q z+b)^{2} /(q x)}
$$

so that

$$
f_{0}(z, x)=f(q z+b, q x), f_{1}(z, x)=\frac{q z}{-2 \pi} \frac{\partial f}{\partial z}(q z+b, q x)
$$

We showed earlier that $\hat{f}(z, x)=x^{1 / 2} f(z, 1 / x)$ and applied Poisson summation to get the functional equation for θ earlier. We piggyback off of this using properties of the Fourier transform, namely

$$
(g(z+b))^{\wedge}=e^{2 \pi i b} \hat{g}(z),(g(a z))^{\wedge}=\frac{1}{a} \hat{g}(z / a),\left(\frac{\partial g}{\partial z}\right)^{\wedge}=2 \pi i z \hat{g}(z)
$$

Hence

$$
\begin{aligned}
\hat{f}_{0}(z, x) & =q^{-1} e^{2 \pi i z b / q} \hat{f}(z / q, q x)=(x / q)^{1 / 2} e^{-\pi z^{2} x / q} e^{2 \pi i z b / q} \\
\hat{f}_{1}(z, x) & =\frac{q z}{-2 \pi}\left(\frac{\partial f}{\partial z}(q z+b, q x)\right)^{\wedge}=\frac{x}{-2 \pi} e^{2 \pi i z b / q}\left(\frac{\partial f}{\partial z}\right)^{\wedge}(z / q, q x) \\
& =-i x^{3 / 2} q^{-1 / 2} z e^{2 \pi i z b / q} e^{-\pi z^{2} x / q}
\end{aligned}
$$

By Poisson summation, we have

$$
\begin{aligned}
\sum_{n} \hat{f}_{0}(n, x) & =\sum_{n}(x / q)^{1 / 2} e^{-\pi n^{2} x / q} e^{2 \pi i n b / q}=\sum_{n} f_{0}(n, x)=\sum_{n} e^{-\pi(q n+b)^{2} /(q x)} \\
\sum_{n} \hat{f}_{1}(n, x) & =\sum_{n}-i x^{3 / 2} q^{-1 / 2} n e^{2 \pi i n b / q} e^{-\pi n^{2} x / q}=\sum_{n} f_{1}(n, x)=\sum_{n}(q n+b) e^{-\pi(q n+b)^{2} /(q x)} .
\end{aligned}
$$

Now multiply by $\bar{\chi}(b)$ and sum over b modulo q to get

$$
\begin{aligned}
(x / q)^{1 / 2} \sum_{n} e^{-\pi n^{2} x / q} \sum_{b} \bar{\chi}(b) e^{2 \pi i n b / q} & =\sum_{n, b} \bar{\chi}(b) e^{-\pi(q n+b)^{2} /(q x)} \\
-i x^{3 / 2} q^{-1 / 2} \sum_{n} n e^{-\pi n^{2} x / q} \sum_{b} \bar{\chi}(b) e^{2 \pi i n b / q} & =\sum_{n, b} \bar{\chi}(b)(q n+b) e^{-\pi(q n+b)^{2} /(q x)} .
\end{aligned}
$$

Use the lemma above $(\tau(\bar{\chi}, n)=\chi(n) \tau(\bar{\chi}))$ to finally obtain

$$
\begin{aligned}
(x / q)^{1 / 2} \tau(\bar{\chi}) \psi_{0}(\chi, x) & =\psi_{0}(\bar{\chi}, 1 / x) \\
-i x^{3 / 2} q^{-1 / 2} \tau(\bar{\chi}) \psi_{1}(\chi, x) & =\psi_{1}(\bar{\chi}, 1 / x)
\end{aligned}
$$

Theorem (Functional equation for $L(s, \chi)$). Given a primitive character χ of modulus q, define

$$
\xi(s, \chi)=(\pi / q)^{-\frac{s+a}{2}} \Gamma\left(\frac{s+a}{2}\right) L(s, \chi)
$$

where $a=0,1$ if $\chi(-1)=1,-1$. Then ξ satisfies the functional equation

$$
\xi(1-s, \bar{\chi})=\frac{i^{a} q^{1 / 2}}{\tau(\chi)} \xi(s, \chi)
$$

Proof. Suppose $\chi(-1)=1$. We proceed as in the construction of the functional equation for ζ starting with

$$
\Gamma(s / 2)=\int_{0}^{\infty} e^{-x} x^{s / 2-1} d x
$$

substituting $x=n^{2} \pi t / q$

$$
(\pi / q)^{-s / 2} n^{-s} \Gamma(s / 2)=\int_{0}^{\infty} e^{-n^{2} \pi t / q} t^{s / 2-1} d t
$$

multiplying by $\chi(n)$ and summing over n to get

$$
\xi(s, \chi)=(\pi / q)^{-s / 2} \Gamma(s / 2) L(s, \chi)=\frac{1}{2} \int_{0}^{\infty} \psi_{0}(t, \chi) t^{s / 2-1} d t
$$

where

$$
\psi_{0}(t, \chi)=\sum_{n \in \mathbb{Z}} \chi(n) e^{-n^{2} \pi t / q}
$$

Split the integral at $t=1$ and use the functional equation for ψ_{0}

$$
\begin{aligned}
\xi(s, \chi) & =\frac{1}{2} \int_{1}^{\infty} \psi_{0}(t, \chi) t^{s / 2-1} d t+\frac{1}{2} \int_{1}^{\infty} \psi_{0}(1 / t, \chi) t^{-s / 2-1} d t \\
& =\frac{1}{2} \int_{1}^{\infty} \psi_{0}(t, \chi) t^{s / 2-1} d t+\frac{\tau(\chi)}{2 q^{1 / 2}} \int_{1}^{\infty} \psi_{0}(t, \bar{\chi}) t^{-s / 2-1 / 2} d t \\
& =\frac{\tau(\chi)}{q^{1 / 2}} \xi(1-s, \bar{\chi})
\end{aligned}
$$

using the fact that $\tau(\chi) \tau(\bar{\chi})=\tau(\chi) \overline{\tau(\chi)}=q$ (since χ is even).
Now assume $\chi(-1)=-1$. We start with $\Gamma((s+1) / 2)$

$$
\Gamma((s+1) / 2)=\int_{0}^{\infty} e^{-x} x^{(s-1) / 2} d x
$$

substituting $x=n^{2} \pi t / q$

$$
(\pi / q)^{-(s+1) / 2} n^{-s} \Gamma((s+1) / 2)=\int_{0}^{\infty} n e^{-n^{2} \pi t / q} t^{(s-1) / 2} d t
$$

multiplying by $\chi(n)$ and summing over n to get

$$
\xi(s, \chi)=(\pi / q)^{-(s+1) / 2} \Gamma((s+1) / 2) L(s, \chi)=\frac{1}{2} \int_{0}^{\infty} \psi_{1}(t, \chi) t^{(s-1) / 2} d t
$$

where

$$
\psi_{1}(t, \chi)=\sum_{n \in \mathbb{Z}} n \chi(n) e^{-n^{2} \pi t / q}
$$

Split the integral at $t=1$ and use the functional equation for ψ_{1}

$$
\begin{aligned}
\xi(s, \chi) & =\frac{1}{2} \int_{1}^{\infty} \psi_{0}(t, \chi) t^{(s-1) / 2} d t+\frac{1}{2} \int_{1}^{\infty} \psi_{0}(1 / t, \chi) t^{-(s+3) / 2} d t \\
& =\frac{1}{2} \int_{1}^{\infty} \psi_{0}(t, \chi) t^{(s-1) / 2} d t+\frac{i q^{1 / 2}}{2 \tau(\bar{\chi})} \int_{1}^{\infty} \psi_{0}(t, \bar{\chi}) t^{-s / 2} d t \\
& =\xi(1-s, \bar{\chi})
\end{aligned}
$$

using the fact that $\tau(\chi) \tau(\bar{\chi})=-\tau(\chi) \overline{\tau(\chi)}=-q$ (since χ is odd).
Here is another proof of the functional equation, along the lines of the second proof for ζ given above (taken from Brendt).
Theorem. For χ modulo q primitive, we have

$$
L(1-s, \chi)=q^{s-1}(2 \pi)^{-s} \tau(\chi) \Gamma(s) L(s, \bar{\chi})\left(e^{-\pi i s / 2}+\chi(-1) e^{\pi i s / 2}\right) .
$$

Proof. Start with Γ, make a change of variable, multiply by $\chi(n)$ and sum over n

$$
\begin{aligned}
\Gamma(s) & =\int_{0}^{\infty} e^{-x} x^{s-1} d x=n^{s} \int_{0}^{\infty} e^{-n x} x^{s-1} d x \\
L(s, \chi) \Gamma(s) & =\int_{0}^{\infty}\left(\sum_{n} \chi(n) e^{-n x}\right) x^{s-1} d x=\int_{0}^{\infty}\left(\sum_{a} \chi(a) \sum_{n} e^{-(n q+a) x}\right) x^{s-1} d x \\
& =\int_{0}^{\infty} x^{s-1} \sum_{n} e^{-n q x} \sum_{a} \chi(a) e^{-a x} d x=\int_{0}^{\infty} \tau\left(\chi, \frac{i q x}{2 \pi}\right) \frac{x^{s-1}}{1-e^{q x}} d x .
\end{aligned}
$$

We will calculate the integral using residues. Consider the function

$$
F(z)=\frac{\pi e^{-\pi i z} \tau(\bar{\chi}, z)}{z^{s} \sin (\pi z) \tau(\bar{\chi})}
$$

and the positively oriented contour C_{m} consisting of two right semicirlces and the segments connecting them
$\Gamma_{m}=\left\{(m+1 / 2) e^{i \theta}:-\pi / 2 \leq \theta \leq \pi / 2\right\}, \Gamma_{\epsilon}=\left\{\epsilon e^{i \theta}:-\pi / 2 \leq \theta \leq \pi / 2\right\}, \quad$ it $\left.: \pm \epsilon \leq t \leq \pm(m+1)\right\}$.
F is meromorphic on the interior of C_{m} with simple poles at the zeros of the sine factor, $z=1, \ldots, m$, with residues
$\lim _{z \rightarrow n}(z-n) F(z)=\frac{e^{-n \pi i}}{n^{s}} \frac{\tau(\bar{\chi}, n)}{\tau(\bar{\chi})} \lim _{z \rightarrow n} \frac{\pi(z-n)}{\sin (\pi z)}=(-1)^{n} \frac{\chi(n)}{n^{s}} \lim _{z \rightarrow n} \frac{\pi(z-n)}{(-1)^{n} \sin (\pi(z-n))}=\frac{\chi(n)}{n^{s}}$.

Hence

$$
\frac{1}{2 \pi i} \int_{C_{m}} F(z) d z=\sum_{n=1}^{m} \frac{\chi(n)}{n^{s}} .
$$

For $s>1$ the integral on Γ_{m} goes to zero since

$$
\left|\frac{\pi e^{-\pi i z} \tau(\bar{\chi}, z)}{\tau(\bar{\chi}) \sin (\pi z)}\right|=\left|\frac{2 \pi i \tau(\bar{\chi}, z)}{\tau(\bar{\chi})\left(e^{2 \pi i z}-1\right)}\right| \leq 2 \pi \sqrt{q} \frac{e^{-2 \pi \Im(z) / q}}{\left|e^{2 \pi i z}-1\right|} \leq M
$$

is bounded. Letting $m \rightarrow \infty$ gives

$$
L(s, \chi)=\int_{i \epsilon}^{i \infty} \frac{\tau(\bar{\chi}, z) d z}{\tau(\bar{\chi}) z^{s}\left(1-e^{2 \pi i z}\right)}+\int_{-i \epsilon}^{-i \infty} \frac{e^{-2 \pi i z} \tau(\bar{\chi}, z) d z}{\tau(\bar{\chi}) z^{s}\left(1-e^{-2 \pi i z}\right)}+\int_{\Gamma_{\epsilon}} F(z) d z
$$

and the two infinite integrals converge uniformly on compacta. For $s<0, F(z) \rightarrow 0$ as $z \rightarrow 0$ since $\tau(\bar{\chi}, z) \rightarrow 0$ and $\sin (\pi z)$ has a simple zero. Hence the integral over Γ_{ϵ} goes to zero and we get, letting $\epsilon \rightarrow 0$ and $z \mapsto i y,-i y$ in the first line, $y \mapsto q y / 2 \pi$ in the second line,

$$
\begin{aligned}
L(s, \chi) & =\int_{0}^{\infty} \frac{i \tau(\bar{\chi}, i y) d y}{\tau(\bar{\chi})\left(e^{\pi i / 2} y\right)^{s}\left(1-e^{-2 \pi y}\right)}+\int_{0}^{\infty} \frac{-i e^{-2 \pi y} \tau(\bar{\chi},-i y) d y}{\tau(\bar{\chi})\left(e^{\pi i / 2} y\right)^{s}\left(1-e^{-2 \pi y}\right)} \\
& =i e^{-\pi i s / 2}(q / 2 \pi)^{1-s} \int_{0}^{\infty} \frac{\tau(\bar{\chi}, i q y / 2 \pi) d y}{\tau(\bar{\chi}) y^{s}\left(1-e^{-q y}\right)} \\
& -i e^{\pi i s / 2}(q / 2 \pi)^{1-s} \int_{0}^{\infty} \frac{e^{-q y} \tau(\bar{\chi},-i q y / 2 \pi) d y}{\tau(\bar{\chi}) y^{s}\left(1-e^{-q y}\right)}
\end{aligned}
$$

Note that under $j \mapsto q-j$ in the Gauss sum we have

$$
\tau(\chi, z)=\sum_{j} \chi(j) e^{2 \pi i j z / q}=\chi(-1) e^{2 \pi i z} \sum_{j} \chi(j) e^{-2 \pi i j z / q}=\chi(-1) e^{2 \pi i z} \tau(\chi,-z)
$$

Using this above we get

$$
\begin{aligned}
L(s, \chi) & =\frac{i}{\tau(\bar{\chi})}(q / 2 \pi)^{1-s}\left(e^{-\pi i s / 2}-\chi(-1) e^{\pi i s / 2}\right) \int_{0}^{\infty} \frac{\tau(\bar{\chi}, i q y / 2 \pi) d y}{y^{s}\left(1-e^{-q y}\right)} \\
& =\frac{i}{\tau(\bar{\chi})}(q / 2 \pi)^{1-s}\left(e^{-\pi i s / 2}-\chi(-1) e^{\pi i s / 2}\right) \Gamma(1-s) L(1-s, \bar{\chi})
\end{aligned}
$$

upon inspection of our earlier integral representation for $\Gamma(s) L(s, \chi)$. Upon $s \rightarrow 1-s$ and using $\tau(\chi) \tau(\bar{\chi})=\chi(-1) q$, we get the stated functional equation.

4 Product Formula for $\xi(s), \xi(s, \chi)$

We would like to establish the product representation

$$
\xi(s)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}, e^{A}=\xi(0)=\frac{1}{2}, B=\frac{\xi^{\prime}(0)}{\xi(0)}=-\frac{\gamma}{2}-1+\frac{1}{2} \log 4 \pi
$$

where the product is over all the zeros of ξ, i.e. the non-trivial zeros of the Riemann zeta function, and a similar product

$$
\xi(s, \chi)=e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}
$$

the product over all zeros of $\xi(s, \chi)$, the non-trivial zeros of $L(s, \chi)$.
We have the following theorems of complex analysis.
Theorem (Weierstrass Factorization). For any entire function with non-zero zeros a_{n} (repeated with multiplicity) and a zero of order m at zero there exists an entire function g and a sequence of integers p_{n} such that

$$
f(z)=e^{g(z)} z^{m} \prod_{n} E_{p_{n}}\left(z / a_{n}\right)
$$

where

$$
E_{0}(z)=1-z, E_{p}(z)=(1-z) e^{1+z+z^{2} / 2+\cdots+z^{p} / p}
$$

Conversely, if $\left|a_{n}\right| \rightarrow \infty$ is a sequence of non-zero complex numbers and p_{n} are integers such that

$$
\sum_{n}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}<\infty \text { for all } r>0
$$

then

$$
\prod_{n} E_{p_{n}}\left(z / a_{n}\right)
$$

is entire with zeros only at a_{n} (with prescribed multiplicity).
For example

$$
\sin (\pi z)=\pi z \prod_{n \in \mathbb{Z} \backslash\{0\}}(1-z / n) e^{z / n}=\pi z \prod_{n=1}^{\infty}\left(1-z^{2} / n^{2}\right)
$$

and

$$
1 / \Gamma(z)=e^{\gamma z} z \prod_{n=1}^{\infty}(1+z / n) e^{-z / n}
$$

We say that an entire function f is of order $\lambda<\infty$ if λ is greatest lower bound among λ such that

$$
|f(z)|=O\left(e^{|z|^{\lambda}}\right) \text { as }|z| \rightarrow \infty
$$

Assume that an entire function f has a Weierstrass factorization with $p_{n}=p$ constant (i.e. there is an integer p such that $\left.\sum_{n}\left|a_{n}\right|^{-(p+1)}<\infty\right)$ and $g(z)$ a polynomial of degree q. Taking p minimal makes p and $g+2 \pi i \mathbb{Z}$ unique. The genus of f is the maximum of p and q. We have the following proposition.

Proposition. If f is entire of genus μ, then for all $\alpha>0$ and for $|z|$ large enough, we have

$$
|f(z)| \leq e^{\alpha|z|^{\alpha+1}}
$$

i.e. an entire function f of genus μ has order less or equal $\mu+1$.

The proof of the proposition depends on the following.
Theorem (Jensen's Formula). If f is entire with zeros z_{i} inside $|z|<R, f(0) \neq 0$, and $f(z) \neq 0$ on $|z|=R$, then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| d \theta=\log |f(0)|+\log \frac{R^{n}}{\left|z_{1}\right| \cdots \cdot\left|z_{n}\right|}=\int_{0}^{R} \frac{n(r)}{r} d r
$$

where $n(r)$ is the number of zeros of f of absolute value less than r.
One consequence of Jensen's formula is that if f is of order λ and $\alpha>\lambda$, then $\sum_{i}\left|z_{i}\right|^{-\alpha}<\infty$. To see this, note that $n(R)=O\left(R^{\alpha}\right)$ since

$$
\int_{0}^{R} \frac{n(r)}{r} d r=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| d \theta-\log |f(0)| \leq R^{\alpha}-\log |f(0)|
$$

and

$$
\int_{R}^{2 R} \frac{n(r)}{r} d r \geq n(R) \log 2
$$

so that

$$
n(R) \log 2 \leq \int_{0}^{2 R} \frac{n(r)}{r} d r \leq(2 R)^{\alpha}-\log |f(0)|=O\left(R^{\alpha}\right) .
$$

From this we see that for $\beta>\alpha>\lambda$

$$
\sum_{i}\left|z_{i}\right|^{-\beta}=\int_{0}^{\infty} r^{-\beta} d n(r)=\beta \int_{0}^{\infty} r^{-\beta-1} n(r) d r<\infty .
$$

The converse of the above proposition holds, showing that entire functions of finite order have nice factorizations.
Theorem (Hadamard Factorization). An entire function f of order λ has finite genus $\mu \leq \lambda$.

We apply the above to the entire functions $\xi(s), \xi(s, \chi)$. We will need the following to estimate their rates of growth.
Theorem (Stirling's Formula). For $z \in \mathbb{C} \backslash(-\infty, 0]$ we have

$$
\Gamma(z)=\sqrt{2 \pi z}\left(\frac{z}{e}\right)^{z} e^{\mu(z)}
$$

where

$$
\mu(z)=-\int_{0}^{\infty} \frac{\{t\}-1 / 2}{z+t} d t=\int_{0}^{\infty} \frac{1}{2} \frac{\{t\}-\{t\}^{2}}{(z+t)^{2}} d t
$$

with $\{t\}=t-\lfloor t\rfloor$ the fractional part of t, and bounds on μ given by

$$
|\mu(z)| \leq \frac{1}{8} \frac{1}{\cos ^{2}(\theta / 2)} \frac{1}{|z|}, z=|z| e^{i \theta .}
$$

Lemma. The entire functions $\xi(s), \xi(s, \chi)$, have order 1 .
Proof. Since $\xi(s)=\xi(1-s)$ we consider $\sigma \geq 1 / 2$, where we have

$$
\begin{aligned}
\left|\frac{s(s-1)}{2} \pi^{-s / 2}\right| & \leq e^{C|s|} \\
|\Gamma(s / 2)| & \leq e^{C|s| \log |s|} \\
|\zeta(s)| & =\left|\frac{s}{s-1}+s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x\right| \leq C|s|,
\end{aligned}
$$

using Stirling's formula and an integral representation of $\zeta(s)$ applicable for $\sigma>0$. Hence $\xi(s)$ has order at most 1 , actually equal to 1 since for real $s \rightarrow \infty$ we have $\zeta(s) \rightarrow 1$ and $\log \Gamma(s) \sim s \log s$.

Similarly if χ is a primitive character modulo q, then for $\xi(s, \chi)=(q / \pi)^{(s+a) / 2)} \Gamma((s+$ a) $/ 2) L(s, \chi)$ with functional equation $\xi(1-s, \bar{\chi})=\frac{i^{a} \sqrt{q}}{\tau(\chi)} \xi(s, \chi)$, and for $\sigma \geq 1 / 2$ we have

$$
\begin{aligned}
\left|(q / \pi)^{(s+a) / 2)}\right| & \leq e^{C|s|}, \\
|\Gamma((s+a) / 2)| & \leq e^{C|s| \log |s|}, \\
|L(s, \chi)| & =\left|s \int_{1}^{\infty} \frac{\sum_{n \leq x} \chi(n)}{x^{s+1}} d x\right| \leq C|s|,
\end{aligned}
$$

so that $|\xi(s, \chi)| \leq q^{(\sigma+1) / 2} e^{C|s| \log |s|}$ (for $\sigma>1 / 2$, similar results for $\sigma<1 / 2$ by the functional equation). Hence $\xi(s, \chi)$ is of order 1 as well.

From the general theory above, we have the desired product formulae for $\xi(s), \xi(s, \chi)$.
Although the constants A, B are not of much importance, we calculate them for ξ anyway. For the constant A we have

$$
e^{A}=\xi(0)=\xi(1)=\frac{1}{2 \sqrt{\pi}} \Gamma(1 / 2) \lim _{s \rightarrow 1}(s-1) \zeta(s)=1 / 2 .
$$

For the constant B we have

$$
B=\frac{\xi^{\prime}(0)}{\xi(0)}=-\frac{\xi^{\prime}(1)}{\xi(1)}
$$

so we consider

$$
\frac{\xi^{\prime}(s)}{\xi(s)}=B+\sum_{\rho} \frac{1}{s-\rho}+\frac{1}{\rho}=\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{s-1}-\log \sqrt{\pi}+\frac{1}{2} \frac{\Gamma^{\prime}(1+s / 2)}{\Gamma(1+s / 2)}
$$

and

$$
\frac{\Gamma^{\prime}(s)}{\Gamma(s)}=-\gamma-\frac{1}{s}+\sum_{n \geq 1}\left(\frac{1}{n}-\frac{1}{s+n}\right)
$$

Hence

$$
\frac{1}{2} \frac{\Gamma^{\prime}(3 / 2)}{\Gamma(3 / 2)}=-\frac{\gamma}{2}-\frac{1}{3}+\sum_{n \geq 1}\left(\frac{1}{2 n}-\frac{1}{3+2 n}\right)=-\frac{\gamma}{2}-1+\sum_{n \geq 2} \frac{(-1)^{n}}{n}=-\frac{\gamma}{2}+1-\log 2
$$

and

$$
B=-\frac{\gamma}{2}-1+\log \sqrt{4 \pi}-\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{s-1}\right)
$$

With $I(s)=\int_{1}^{\infty}\{x\} / x^{s+1} d x$ we have

$$
\zeta(s)=\frac{s}{s-1}(1-(s-1) I(s))
$$

so that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{s-1}=\frac{1}{s}-\frac{(s-1) I^{\prime}(s)+I(s)}{1-(s-1) I(s)}
$$

and

$$
\lim _{s \rightarrow 1} \frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{s-1}=1-I(1)
$$

Finally note that

$$
\begin{aligned}
I(1) & =\int_{1}^{\infty} \frac{x-\lfloor x\rfloor}{x^{2}} d x=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{d x}{x}-\sum_{n=1}^{N-1} n \int_{n}^{n+1} \frac{1}{x^{2}} \\
& =\lim _{N \rightarrow \infty} \log N-\sum_{n=1}^{N-1}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1+\lim _{N \rightarrow \infty} \log N-\sum_{n=1}^{N} \frac{1}{n} \\
& =1-\gamma
\end{aligned}
$$

so that

$$
B=-\frac{\gamma}{2}-1+\log \sqrt{4 \pi}
$$

Another expression for B in terms of the zeros of ξ is

$$
B=-\frac{1}{2} \sum_{\rho} \frac{1}{\rho(1-\rho)}
$$

which can be seen from the equation (using $s \leftrightarrow 1-s$ and $\rho \leftrightarrow 1-\rho$)

$$
B+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)=-B-\sum_{\rho}\left(\frac{1}{1-s-\rho}+\frac{1}{\rho}\right)
$$

from ξ^{\prime} / ξ or from the product itself (say at $s=0$)

$$
e^{A+B s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}=e^{A+B(1-s)} \prod_{\rho}\left(1-\frac{1-s}{1-\rho}\right) e^{(1-s) /(1-\rho)}
$$

Using this we can write the product formula (similar to that of $\sin (\pi z)$ combining the roots $\pm n$) as

$$
\xi(s)=\xi(0) \prod_{\Im \rho>0}\left(1-\frac{s(1-s)}{\rho(1-\rho)}\right) .
$$

5 A Zero-Free Region and the Density of Zeros for $\zeta(s)$

We would like to extend the zero-free region of the zeta function to an open set containing $\sigma \geq 1$. Specifically we have the following.

Theorem. There is a $c>0$ such that $\Re \rho<1-c / \log (|t|+2)$ for any zero ρ of $\zeta(s)$.
Proof. Once again we make use of

$$
3+4 \cos \theta+\cos 2 \theta=2(1+\cos \theta)^{2} \geq 0
$$

applied to

$$
-\Re \frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n} \frac{\Lambda(n)}{n^{\sigma}} \cos (t \log n)
$$

Considering the logarithmic derivative via the product formula for ξ we have

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=B+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)-\frac{1}{s-1}-\frac{1}{2} \frac{\Gamma^{\prime}(1+s / 2)}{\Gamma(1+s / 2)}+\frac{1}{2} \log \pi
$$

We obtain the following estimates (say for $1 \leq \sigma \leq 2,|t| \geq 2$, using A to represent a positive constant, not the same at each instance)

$$
\begin{aligned}
-\frac{\zeta(\sigma)}{\zeta(\sigma)} & <\frac{1}{\sigma-1}+A \\
-\Re \frac{\zeta(\sigma+i t)}{\zeta(\sigma+i t)} & <A \log |t|-\frac{1}{\sigma-\beta} \\
-\Re \frac{\zeta(\sigma+2 i t)}{\zeta(\sigma+2 i t)} & <A \log |t|
\end{aligned}
$$

where $\rho=\beta+i \gamma$ is a zero of zeta with $\gamma=t$, using the facts that $\Gamma^{\prime}(s) / \Gamma(s) \leq A \log |t|$ (PROOF???) and that the sum over the roots is positive

$$
\Re\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)=\frac{\sigma-\beta}{|s-\rho|^{2}}+\frac{\beta}{|\rho|^{2}}
$$

Hence we obtain

$$
\begin{aligned}
3\left(-\frac{\zeta(\sigma)}{\zeta(\sigma)}\right)+4\left(-\Re \frac{\zeta(\sigma+i t)}{\zeta(\sigma+i t)}\right)+\left(-\Re \frac{\zeta(\sigma+2 i t)}{\zeta(\sigma+2 i t)}\right) & \geq 0 \\
3\left(\frac{1}{\sigma-1}+A\right)+4\left(A \log |t|-\frac{1}{\sigma-\beta}\right)+(A \log |t|) & \geq 0 \\
\frac{3}{\sigma-1}-\frac{4}{\sigma-\beta}+A \log |t| & \geq 0
\end{aligned}
$$

Let $\sigma=1+\delta / \log |t|$ for some positive δ. Then

$$
\beta \leq 1-\frac{\delta-A \delta^{2}}{\log |t|}
$$

and choosing δ so that $\delta-A \delta^{2}>0$ we have $\beta \leq 1-c / \log |t|$ for some $c>0$. Combining this with the fact that ζ has no zeros in the region $1 \leq \sigma \leq 2,|t|<2$ gives the result.

We also have the following estimate stated by Riemann about the density of zeros in the critical strip $0<\sigma<1$.
Theorem. Let $N(T)$ be the number of zeros of $\zeta(s)$ in the region $0<\sigma<1,0<t<T$. Then

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T)
$$

as $T \rightarrow \infty$.
Proof. Let R be the rectangle with vertices $\{-1,2,2+i T,-1+i T\}$. Then if T doesn't coincide with the ordinate of a zero, we have

$$
2 \pi N(T)=\Delta_{R} \arg \xi(\text { change in the argument })
$$

Since $\xi(s)=\xi(1-s)=\overline{\xi(1-\bar{s})}$ and $x i$ is real on the real axis, we have $\pi N(T)=\Delta_{L} \arg \xi$ where L is the segment running between $2,2+i T, 1 / 2+i T$. With

$$
\xi(s)=\pi^{-s / 2}(s-1) \Gamma(1+s / 2) \zeta(s)
$$

and

$$
\log \Gamma(s)=(s-1 / 2) \log s-s+\log (\sqrt{2 \pi})+O(1 / s)
$$

we have

$$
\begin{aligned}
\Delta_{L} \arg (s-1) & =\arg (i T-1 / 2)=\frac{\pi}{2}+\arctan \left(\frac{1}{2 T}\right)=\frac{\pi}{2}+O(1 / T), \\
\Delta_{L} \arg \pi^{-s / 2} & =\arg \left(e^{-(1 / 2+i T) \log (\pi) / 2}\right)=-\frac{T}{2} \log (\pi), \\
\Delta_{L} \arg \Gamma(1+s / 2) & =\Im \log \Gamma\left(\frac{5}{4}+\frac{T}{2} i\right) \\
& =\Im\left[\left(\frac{3}{4}+\frac{T}{2} i\right) \log \left(\frac{5}{4}+\frac{T}{2} i\right)-\left(\frac{5}{4}+\frac{T}{2} i\right)+\log (\sqrt{2 \pi})+O(1 / T)\right] \\
& =\frac{T}{2} \log \left(\frac{T}{2}\right)-\frac{T}{2}+\frac{3 \pi}{8}+O(1 / T),
\end{aligned}
$$

(using

$$
\log \left(\frac{5}{4}+\frac{T}{2} i\right)=\log \left(\frac{T}{2}\right)+O\left(1 / T^{2}\right)+\left(\frac{\pi}{2}+O(1 / T)\right) i
$$

in the last step). So we have

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+\Delta_{L} \arg \zeta+O(1 / T)
$$

We now show that $\Delta_{L} \arg \zeta=\arg \zeta(1 / 2+i T)=O(\log T)$.

6 A Zero-Free Region and the Density of Zeros for $L(s, \chi)$

7 Explicit Formula Relating the Primes to Zeros of $\zeta(s)$

We first want to establish a formula explicitly relating the primes to the zeros of the Riemann zeta function, namely

$$
\psi_{0}(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

where ψ_{0} is the Chebychev function $\psi(x)$, but taking its average value at discontinuities

$$
\psi_{0}(x)=\left\{\begin{array}{cc}
\psi(x)=\sum_{n \leq x} \Lambda(n) & x \text { not a prime power } \\
\psi(x)-\frac{1}{2} \Lambda(x) & x \text { a prime power }
\end{array}\right.
$$

(here $\Lambda(n)=\log p$ if $n=p^{k}, k \geq 1$ is a prime power, zero otherwise, is the von Mangoldt function).

The sum over the non-trivial zeros of the zeta function is conditionally convergent, so we pair $\rho, \bar{\rho}$. Also note that the log term is the sum over the trivial zeros of zeta,

$$
-\sum_{n} \frac{x^{-2 n}}{n}=\log \left(1-x^{-2}\right)
$$

and that $\zeta^{\prime}(0) / \zeta(0)=\log (2 \pi)$: using ξ^{\prime} / ξ, the derivation of the constant B and the fact that $\Gamma^{\prime}(1) / \Gamma(1)=-\gamma$ we have

$$
\begin{aligned}
\frac{\zeta^{\prime}(0)}{\zeta(0)} & =B+1+\log \sqrt{\pi}-\frac{1}{2} \frac{\Gamma^{\prime}(1)}{\Gamma(1)} \\
& =\left(-\frac{\gamma}{2}-1+\log \sqrt{4 \pi}\right)+1+\log \sqrt{\pi}+\frac{\gamma}{2} \\
& =\log (2 \pi)
\end{aligned}
$$

We obtain this forumla by evaluating the integral

$$
\frac{-1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta^{\prime}(s)}{\zeta(s)} x^{s} \frac{d s}{s}
$$

in two differnent ways. From the Euler product, the logarithmic derivative of ζ is intimately related to the von Mangoldt function

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{d}{d s} \log \prod_{p}\left(1-p^{-s}\right)^{-1}=-\sum_{p, n>0} p^{-n s} \log p=-\sum_{n} \frac{\Lambda(n)}{n^{s}} .
$$

From the product expression for ξ, we can express ζ^{\prime} / ζ in terms of the zeros of zeta,

$$
\begin{aligned}
\frac{d}{d s} \log \xi(s) & =B+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right) \\
& =\frac{d}{d s} \log \left((s-1) \pi^{-s / 2} \Gamma(1+s / 2) \zeta(s)\right) \\
& =\frac{1}{s-1}+\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{2} \frac{\Gamma^{\prime}(1+s / 2)}{\Gamma(1+s / 2)}-\frac{1}{2} \log \pi
\end{aligned}
$$

so that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=B+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)-\frac{1}{s-1}-\frac{1}{2} \frac{\Gamma^{\prime}(1+s / 2)}{\Gamma(1+s / 2)}+\frac{1}{2} \log \pi
$$

We need the following lemma.
Lemma. Let $c, y>0$. Then

$$
\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} y^{s} \frac{d s}{s}=\left\{\begin{array}{cc}
0 & 0<y<1 \\
1 / 2 & y=1 \\
1 & y>1
\end{array}\right.
$$

More specifically, if

$$
\delta(y)=\left\{\begin{array}{cc}
0 & 0<y<1 \\
1 / 2 & y=1 \\
1 & y>1
\end{array} \quad, \quad I(y, T)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} y^{s} \frac{d s}{s},\right.
$$

then

$$
|I(y, T)-\delta(y)| \leq\left\{\begin{array}{cl}
y^{c} \min \left\{1,(T|\log y|)^{-1}\right\} & y \neq 1 \\
c T^{-1} & y=1
\end{array}\right.
$$

Proof. For one of the inequalities, we consider the integral $(2 \pi i)^{-1} \int_{R} y^{s} d s / s$ around a large rectangle R with corners $\{c \pm i T, C \pm i T\}$ and let $C \rightarrow \pm \infty$ depending on whether $0<y<1$ or $y>1$, the integral along the vertical edge at infinity being zero in each case respectively.

For $0<y<1$, we have $(2 \pi i)^{-1} \int_{R} y^{s} d s / s=0$ so that

$$
I(y, T)=\frac{1}{2 \pi i} \int_{c-i T}^{\infty-i T} \frac{y^{s}}{s} d s-\frac{1}{2 \pi i} \int_{c+i T}^{\infty+i T} \frac{y^{s}}{s} d s
$$

and

$$
|I(y, T)-\delta(y)|<\frac{1}{T} \int_{c}^{\infty} y^{\sigma} d \sigma=\frac{-\pi y^{c}}{\log y}
$$

For $y>1$, we have $(2 \pi i)^{-1} \int_{R} y^{s} d s / s=1$ so that

$$
I(y, T)=1-\frac{1}{2 \pi i} \int_{-\infty-i T}^{c-i T} \frac{y^{s}}{s} d s+\frac{1}{2 \pi i} \int_{-\infty+i T}^{c+i T} \frac{y^{s}}{s} d s
$$

and

$$
|I(y, T)-\delta(y)|<\frac{1}{T} \int_{-\infty}^{c} y^{\sigma} d \sigma=\frac{\pi y^{c}}{\log y}
$$

For the other inequality, we use a circular contour of radius $R=\left(c^{2}+T^{2}\right)^{1 / 2}$ centered at the origin where

$$
\left|\frac{y^{s}}{s}\right|=\frac{y^{R \cos \theta}}{R} \leq \frac{y^{c}}{R} \text { for either of } 0<y<1,1<y
$$

to see that

$$
|I(y, T)-\delta(y)| \leq 2 \pi R \frac{1}{2 \pi} \frac{y^{c}}{R}=y^{c}
$$

Finally, for the case $y=1$ we have

$$
\begin{aligned}
I(1, T) & =\frac{1}{2 \pi i} \int_{-T}^{T} \frac{d(c+i t)}{c+i t}=\frac{1}{2 \pi} \int_{0}^{T}\left(\frac{1}{c+i t}-\frac{1}{c-i t}\right) d t=\frac{1}{\pi} \int_{0}^{T} \frac{c}{c^{2}+t^{2}} d t \\
& =\frac{1}{\pi} \int_{0}^{T / c} \frac{d u}{1+u^{2}}=\frac{1}{2}-\int_{T / c}^{\infty} \frac{d u}{1+u^{2}}, \\
\left|I(1, T)-\frac{1}{2}\right| & =\frac{1}{\pi} \int_{T / c}^{\infty} \frac{d u}{1+u^{2}} \leq \int_{T / c}^{\infty} \frac{d u}{u^{2}}=\frac{c}{T} .
\end{aligned}
$$

Using the lemma we have

$$
\frac{-1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta^{\prime}(s)}{\zeta(s)} x^{s} \frac{d s}{s}=\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \sum_{n} \frac{\Lambda(n)}{n^{s}} x^{s} \frac{d s}{s}=\psi_{0}(x)
$$

while the evaluation of the integral using the other expression for ζ^{\prime} / ζ gives, for $x>1$,

$$
\begin{aligned}
& \frac{-1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta^{\prime}(s)}{\zeta(s)} x^{s} \frac{d s}{s} \\
= & \frac{-1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(B+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)-\frac{1}{s-1}-\frac{1}{2} \frac{\Gamma^{\prime}(1+s / 2)}{\Gamma(1+s / 2)}+\frac{1}{2} \log \pi\right) x^{s} \frac{d s}{s} \\
= & \frac{-1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(\log (2 \pi)-\frac{s}{s-1}+\sum_{\rho} \frac{s}{\rho(s-\rho)}-\sum_{n \geq 1} \frac{s}{2 n(s+2 n)}\right) x^{s} \frac{d s}{s} \\
= & -\frac{\zeta^{\prime}(0)}{\zeta(0)}+\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s} d s}{s-1}-\sum_{\rho} \frac{1}{\rho} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s} d s}{s-\rho}+\sum_{n \geq 1} \frac{1}{2 n} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s} d s}{s+2 n} \\
= & -\frac{\zeta^{\prime}(0)}{\zeta(0)}+x \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s-1} d s}{s-1}-\sum_{\rho} \frac{x^{\rho}}{\rho} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s-\rho} d s}{s-\rho}+\sum_{n \geq 1} \frac{x^{-2 n}}{2 n} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s+2 n} d s}{s+2 n} \\
= & -\frac{\zeta^{\prime}(0)}{\zeta(0)}+x-\sum_{\rho} \frac{x^{\rho}}{\rho}+\sum_{n \geq 1} \frac{x^{-2 n}}{2 n},
\end{aligned}
$$

(modulo a whole bunch of convergence).

8 Chebyshev Estimates and the Prime Number Theorem

We start with some elementary estimates, bounding $\pi(x)$, the number of primes less or equal x.

Theorem (Chebyshev Estimates). There are constants $0<c_{1} \leq 1 \leq c_{2}$ such that

$$
\frac{c_{1} x}{\log x} \leq \pi(x) \leq \frac{c_{2} x}{\log x}
$$

Proof. For an upper bound, we start with

$$
\prod_{n<p<2 n} p<\binom{2 n}{n}<2^{2 n}
$$

so that, for $\vartheta(x)=\sum_{p \leq x} \log p$ we have

$$
\vartheta(2 n)-\vartheta(n)=\sum_{n<p<2 n} \log p \leq 2 n \log 2
$$

Summing over $n=2^{k}, 0 \leq k \leq 2^{m-1}$ gives

$$
\vartheta\left(2^{m}\right)=\sum_{k=0}^{m-1} \vartheta\left(2 \cdot 2^{k}\right)-\vartheta\left(2^{k}\right) \leq \sum_{k=0}^{m-1} 2^{k+1} \log 2 \leq 2^{m+1} \log 2
$$

For $2^{m-1}<x \leq 2^{m}$ we have

$$
\vartheta(x) \leq \vartheta\left(2^{m}\right) \leq 2^{m+1} \log 2=(4 \log 2) 2^{m-1} \leq(4 \log 2) x
$$

[A similar/equivalent estimate for ψ is obtained by considering

$$
S(x)=\sum_{n \leq x} \log n=\sum_{n \leq x} \psi(x / n)=x \log x-x+O(\log x)
$$

since

$$
\sum_{n \leq x} \log n=\int_{1}^{x}\left(\log t+\frac{W(t)}{t}\right) d t+\frac{1}{2} \log x \leq x \log x-x+\log x
$$

by Euler-Maclurin summation. We have

$$
\begin{aligned}
S(x)-2 S(x / 2) & =-\sum_{n}(-1)^{n} \psi(x / n) \\
& =x \log x-x+O(\log x)-2\left(\frac{x}{2} \log (x / 2)-\frac{x}{2}+O(\log (x / 2))\right) \\
& =x \log 2+O(\log x)
\end{aligned}
$$

Hence $\psi(x)>x \log 2+O(\log x)$ and $\psi(x)-\psi(x / 2)<x \log 2+O(\log x)$. If r is maximal such that $x / 2^{r} \geq 2$ then
$\psi(x)-\psi\left(x / 2^{r}\right)=\sum_{i=0}^{r-1} \psi\left(x / 2^{i}\right)-\psi\left(x / 2^{i+1}\right) \leq x 2 \log 2+r O(\log x)=x \log 4+O\left((\log x)^{2}\right)$
since $r=O(\log x)$. Hence

$$
x \log 2+O(\log x)<\psi(x)<x \log 4+O\left((\log x)^{2}\right)
$$

showing $\psi(x) \asymp x$.]
We relate this to $\pi(x)$ by noting that for $0<\alpha<1$ we have

$$
\left[\pi(x)-\pi\left(x^{\alpha}\right)\right] \log x^{\alpha} \leq \vartheta(x)-\vartheta\left(x^{\alpha}\right) \leq \vartheta(x)<(4 \log 2) x
$$

so that

$$
\pi(x) \leq \frac{(4 \log 2) x}{\alpha \log x}+\pi\left(x^{\alpha}\right) \leq \frac{(4 \log 2) x}{\alpha \log x}+x^{\alpha}=\frac{x}{\log x}\left(\frac{4 \log 2}{\alpha}+x^{\alpha-1} \log x\right) \leq \frac{6 x}{\log x}
$$

(for instance, choosing α wisely).
For a lower bound, we start with

$$
2^{n}<\left(\frac{n+1}{1}\right) \cdot\left(\frac{n+2}{2}\right) \cdot \ldots\left(\frac{n+n}{n}\right)=\binom{2 n}{n} .
$$

We need the fact (easy to prove) that the largest power of p dividing $n!$, $\operatorname{ord}_{p}(n!)$, is given by $\sum_{k \geq 1}\left\lfloor n / p^{k}\right\rfloor$. This gives

$$
\operatorname{ord}_{p}\binom{2 n}{n}=\sum_{k \geq 1}\left(\left\lfloor\frac{2 n}{p^{k}}\right\rfloor-2\left\lfloor\frac{n}{p^{k}}\right\rfloor\right) \leq \frac{\log (2 n)}{\log p}
$$

since each term in the sum is 0 or 1 and for $p^{k}>2 n$ we have $\left\lfloor 2 n / p^{k}\right\rfloor,\left\lfloor n / p^{k}\right\rfloor=0$. Hence

$$
2^{n}<\binom{2 n}{n} \leq \prod_{p \leq 2 n} p^{\log 2 n / \log p}=(2 n)^{\pi(2 n)}
$$

and taking logarithms gives

$$
\pi(2 n) \geq \frac{\log 2}{2} \frac{2 n}{\log (2 n)}
$$

For odd integers we have

$$
\pi(2 n+1) \geq \pi(2 n) \geq \frac{\log 2}{2} \frac{2 n}{2 n+1} \frac{2 n+1}{\log (2 n+1)}
$$

so that

$$
\pi(x) \geq \frac{x / 6}{\log x}
$$

(for instance).

We can relate the asymptotics of $\pi(x)$ to those of $\psi(x), \vartheta(x)$ as follows.
Proposition. $\psi(x), \vartheta(x) \sim x$ if and only if $\pi(x) \sim x / \log x$.
Proof. In one direction we have

$$
\vartheta(x) \leq \psi(x)=\sum_{p \leq x}\left\lfloor\frac{\log x}{\log p}\right\rfloor \log p \leq \pi(x) \log x
$$

while in the other we have, for $0<\delta<1$,
$\psi(x) \geq \vartheta(x) \geq \sum_{x^{1-\delta} \leq p \leq x} \log p \geq(1-\delta)\left[\pi(x)-\pi\left(x^{1-\delta}\right)\right] \log x=(1-\delta) \log x\left[\pi(x)+O\left(x^{1-\delta}\right)\right]$.
Hence for all $0<\delta<1$ we have

$$
(1-\delta) \frac{\pi(x)}{x / \log x}+O\left(x^{-\delta} \log x\right) \leq \frac{\psi(x)}{x}, \frac{\vartheta(x)}{x} \leq \frac{\pi(x)}{x / \log x}
$$

A 'quick' proof of the prime number theorem comes from the fact that $\zeta(s) \neq 0$ on $\sigma \geq 1$ and the following Tauberian theorem.

Theorem (Newman's Tauberian Theorem). Suppose $f(t)$ is bounded and locally integrable for $t \geq 0$ and that

$$
g(z)=\int_{0}^{\infty} e^{-z t} f(t) d t, \Re z>0
$$

extends to a holomorphic funtion on $\Re z \geq 0$. Then

$$
\int_{0}^{\infty} f(t) d t
$$

exists.
Proof. Let C be the boundary of

$$
\{|z| \leq R\} \cap\{\Re z \geq-\delta\}
$$

where R is large positive and $\delta>0$ small enough so that $g(z)$ is analytic on C. For $g_{T}(z)=\int_{0}^{T} f(t) e^{-z t} d t$ we have

$$
g(0)-g_{T}(0)=\frac{1}{2 \pi i} \int_{C}\left(g(z)-g_{T}(z)\right) e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z} .
$$

On the right semi-cricle C_{+}we have

$$
\begin{aligned}
\left|g(z)-g_{T}(z)\right|=\left|\int_{T}^{\infty} f(t) e^{-z t} d t\right| \leq M \int_{T}^{\infty}\left|e^{z t}\right| d t & =\frac{M e^{T \Re z}}{\Re z} \\
\left|e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{1}{z}\right| & =\frac{2 \Re z}{R^{2}} e^{T \Re z} \\
\left|\frac{1}{2 \pi i} \int_{C_{+}}\left(g(z)-g_{T}(z)\right) e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right| & \leq \frac{M}{R}
\end{aligned}
$$

where $M=\max _{t \geq 0}\{|f(t)|\}$.
On $C_{-}=C \cap\{\Re z \leq 0\}$ we estimate integrals involving g, g_{T} separately. For $C_{-}^{\prime \prime}$ the left semi-circle of radius R, we have (since g_{T} entire)

$$
\frac{1}{2 \pi i} \int_{C_{-}} g_{T}(z) e^{z T}\left(1+\frac{z^{2}}{R^{2}} \frac{d z}{z}\right)=\frac{1}{2 \pi i} \int_{C_{-}^{\prime}} g_{T}(z) e^{z T}\left(1+\frac{z^{2}}{R^{2}} \frac{d z}{z}\right)
$$

and estimates

$$
\begin{aligned}
&\left|g_{T}(z)\right|=\left|\int_{0}^{T} f(t) e^{-z t} d t\right| \leq M \int_{-\infty}^{T}\left|e^{-z t}\right| d t=M \frac{e^{-T \Re z}}{-\Re z} \\
&\left|e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{1}{z}\right|=\frac{-2 \Re z}{R^{2}} e^{T \Re z} \text { (as before), } \\
&\left|\frac{1}{2 \pi i} \int_{C_{-}^{\prime}} g_{T}(z) e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right| \leq \frac{M}{R} .
\end{aligned}
$$

For the integral involving g we have

$$
\left|\frac{1}{2 \pi i} \int_{C_{-}^{\prime}} g(z) e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right| \rightarrow 0, T \rightarrow \infty
$$

since the only dependence on T in the integrand is $e^{z T}$, which quickly approaches zero as $T \rightarrow \infty$.

Hence

$$
\lim _{T \rightarrow \infty}\left|g(0)-g_{T}(0)\right| \leq \frac{2 M}{R}
$$

for arbitrary R, so that $g_{T}(0) \rightarrow g(0)$ as $T \rightarrow \infty$ as desired.
Theorem (Prime Number Theorem). $\vartheta(x) \sim x$.
Proof. The function $\Phi(s):=\sum_{p} \log p / p^{s}$ extends meromorphically to $\sigma>1 / 2$ with a simple pole at 1 with residue 1 and poles at zeros of $\zeta(s)$ since

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n} \frac{\Lambda(n)}{n^{s}}=\sum_{p} \frac{\log p}{p^{s}-1}=\Phi(s)+\sum_{p} \frac{\log p}{p^{s}\left(p^{s}-1\right)}
$$

and the last sum converges for $\sigma>1 / 2$. Because ζ has no zeros in $\sigma \geq 1, \Phi(s)-(s-1)^{-1}$ is holomorphic on $\sigma \geq 1$. This along with $\vartheta(x)=O(x)$ allows us to apply the Tauberian theorem to conclude that

$$
\int_{1}^{\infty} \frac{\vartheta(x)-x}{x^{2}} d x
$$

converges as follows. We have

$$
\begin{aligned}
& \Phi(s)=\sum_{p} \frac{\log p}{p^{s}}=\int_{1}^{\infty} \frac{d \vartheta(x)}{x^{s}}=s \int_{1}^{\infty} \frac{\vartheta(x)}{x^{s+1}} d x=s \int_{0}^{\infty} e^{-s t} \vartheta\left(e^{t}\right) d t \\
& \int_{0}^{\infty}\left(\vartheta\left(e^{t}\right) e^{-t}-1\right) e^{-z t} d t=\frac{\Phi(z+1)}{z+1}-\frac{1}{z}=: g(z)
\end{aligned}
$$

so that with $f(t):=\vartheta\left(e^{t}\right) e^{-t}-1$ (remember $\vartheta(x)=O(x)$ so that f is bounded) we have the existence of

$$
\int_{1}^{\infty} \frac{\vartheta(x)-x}{x^{2}} d x=\int_{0}^{\infty}\left(\vartheta\left(e^{t}\right) e^{-t}-1\right) d t=\int_{0}^{\infty} f(t) d t
$$

Finally we show that $\vartheta(x) \sim x$. If not, say $\vartheta(x) \geq \lambda x$ for arbitrarily large x and some $\lambda>1$ then

$$
\int_{x}^{\lambda x} \frac{\vartheta(t)-t}{t^{2}} d t \geq \int_{x}^{\lambda x} \frac{\vartheta(x)-t}{t^{2}} d t \geq \int_{x}^{\lambda x} \frac{\lambda x-t}{t^{2}} d t=\int_{1}^{\lambda} \frac{\lambda-t}{t^{2}} d t>0
$$

contradicting convergence of the integral for large x and fixed λ.
Similarly, if $\vartheta(x) \leq \lambda x$ for arbitrarily large x and some $\lambda<1$ then

$$
\int_{\lambda x}^{x} \frac{\vartheta(t)-t}{t^{2}} d t \leq \int_{x}^{\lambda x} \frac{\vartheta(x)-t}{t^{2}} d t \leq \int_{\lambda x}^{x} \frac{\lambda x-t}{t^{2}} d t=\int_{\lambda}^{1} \frac{\lambda-t}{t^{2}} d t<0
$$

contradicting convergence of the integral as well.
Another approach is to show $\psi(x) \sim x$ starting with von Mangoldt's explicit formula

$$
\psi_{0}(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

and using the zero-free region near $\sigma=1$ to control the sum over the non-trivial zeros of zeta.

Theorem (Prime Number Theorem). $\psi(x) \sim x$.
Proof. Let the zeros be denoted by $\rho=\beta+\gamma i$. We know that there is a constant c such that $\beta \leq 1-c / \log T$ for $|\gamma| \leq T$, so that

$$
\left|x^{\rho}\right|=x^{\beta} \leq x e^{-c \log (x) / \log T}
$$

We also have

$$
\sum_{0<\gamma \leq T} \frac{1}{|\rho|} \leq \sum_{0<\gamma \leq T} \frac{1}{\gamma}=\int_{0}^{T} \frac{d N(t)}{t}=\frac{N(t)}{T}+\int_{0}^{T} \frac{N(t)}{t^{2}} d t \ll \log T+\int_{0}^{T} \frac{t \log t}{t^{2}} \ll(\log T)^{2}
$$

where $N(t) \ll t \log t$ is the number of zeros in the critical strip with $0<\gamma \leq t$. Hence

$$
\left|\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}\right| \ll x(\log T)^{2} e^{-c \log x / \log T}
$$

Dividing by x and letting $T \rightarrow \infty, x \rightarrow \infty$ gives $\psi(x) \sim x$.

9 Prime Number Theorem in Arithmetic Progressions

We know that for $(a, q)=1$, there are infinitely many primes congruent to a modulo q and in fact we have the following.

Theorem (PNT in Arithmetic Progresions). We have

$$
\vartheta(x ; a, q) \sim x
$$

where

$$
\vartheta(x ; a, q)=\phi(q) \sum_{\substack{p \leq x \\ p \equiv a(q)}} \log p .
$$

From this it follows that

$$
\pi(x ; a, q) \sim \frac{1}{\phi(q)} \frac{x}{\log x}
$$

where $\pi(x ; a, q)=|\{p \leq x, p \equiv a(q)\}|$.
Proof. We proceed using Newman's Tauberian theorem as above. We have $\vartheta(x ; a, q)=$ $O(x)$ since

$$
\vartheta(x ; a, q) \leq \phi(q) \vartheta(x)=O(x) .
$$

We also know that $L(s, \chi) \neq 0$ on $\sigma \geq 1$.

References

[1] Brendt, Bruce C., A New Proof of the Functional Equation of Dirichlet L-Functions, Proceedings of the American Mathematical Society, Vol. 37, No. 2 (Feb., 1973), pp. 355-357
[2] Conway, John B., Functions of One Complex Variable (Second Edition), GTM Vol. 11, Springer-Verlag
[3] Edwards, H.M., Riemann's Zeta Function, Dover
[4] Davenport, Harold, Multiplicative Number Theory (Third Edition), GTM Vol. 74, Springer-Verlag
[5] Ireland, Kenneth and Rosen, Michael, A Classical Introduction to Modern Number Theory (Second Edition), GTM Vol. 84, Springer-Verlag
[6] Iwaniec, H., Lectures on the Riemann Zeta Function, University Lecture Series Vol. 62, AMS
[7] Paul Monsky, Simplifying the Proof of Dirichlet's Theorem, The American Mathematical Monthly, Vol. 100, No. 9 (Nov., 1993), pp. 861-862
[8] Serre, J.P. A Course in Arithmetic, GTM Vol. 7, Springer-Verlag
[9] Zagier, D., Newman's Short Proof of the Prime Number Theorem, The American Mathematical Monthly, Vol. 104, No. 8 (Oct., 1997), pp. 705-708

