MATH 8174: Assignment 14

1. If $\{\beta-s \alpha, \ldots, \beta, \ldots, \beta+t \alpha\}$ is the α-string through β, show that $\beta+r \alpha$ is a root if and only if $-s \leq r \leq t$.
Here are some suggested steps; recall that the "if" direction was proved in class.
(1) By considering the $-\alpha$-string through $-\beta$, show that without loss of generality, we may suppose for a contradiction that $\beta+r \alpha$ is a root for some $r \geq t+2$.
(2) Choose this r to be as small as possible and consider the α-string through $\beta+r \alpha$; this has the form

$$
\beta+r \alpha, \ldots, \beta+(r+m) \alpha
$$

for some $m \geq 0$. Use the calculation of (7.9) to show that

$$
\beta(x)+r \alpha(x)=-\frac{m}{2} \alpha(x) .
$$

(3) Use (9.2)(f) to derive a contradiction from the equation

$$
\frac{(s-t)}{2} \alpha(x)=\left(-\frac{m}{2}-r\right) \alpha(x) .
$$

2. Show that, in the standard notation for a semisimple Lie algebra, the elements $e_{\alpha}, e_{-\alpha}$ and h_{α} span a subalgebra isomorphic to $\mathfrak{s l}_{2}(\mathbb{C})$.
3. The roots of a semisimple Lie algebra come in pairs $\{\alpha,-\alpha\}$. Show that we have $\operatorname{dim}(H) \leq s$, where H is the Cartan subalgebra. Give an example of a semisimple Lie algebra L for which $\operatorname{dim}(H)=s$.
4. Let H be a vector space over a field k, and let (,) be a symmetric bilinear form on H. If $\left\{h_{1}, \ldots, h_{l}\right\}$ is a basis for H and if $a_{i j}=\left(h_{i}, h_{j}\right)$, prove that $($,$) is$ nondegenerate if and only if $\left(a_{i j}\right)$ is a nonsingular matrix.
