MATH 8174: Assignment 14

1. If $\{\beta - s\alpha, \dots, \beta, \dots, \beta + t\alpha\}$ is the α -string through β , show that $\beta + r\alpha$ is a root if and only if $-s \leq r \leq t$.

Here are some suggested steps; recall that the "if" direction was proved in class.

- (1) By considering the $-\alpha$ -string through $-\beta$, show that without loss of generality, we may suppose for a contradiction that $\beta + r\alpha$ is a root for some $r \ge t + 2$.
- (2) Choose this r to be as small as possible and consider the α -string through $\beta + r\alpha$; this has the form

$$\beta + r\alpha, \ldots, \beta + (r+m)\alpha$$

for some $m \ge 0$. Use the calculation of (7.9) to show that

$$\beta(x) + r\alpha(x) = -\frac{m}{2}\alpha(x).$$

(3) Use (9.2)(f) to derive a contradiction from the equation

$$\frac{(s-t)}{2}\alpha(x) = \left(-\frac{m}{2} - r\right)\alpha(x).$$

- 2. Show that, in the standard notation for a semisimple Lie algebra, the elements e_{α} , $e_{-\alpha}$ and h_{α} span a subalgebra isomorphic to $\mathfrak{sl}_2(\mathbb{C})$.
- 3. The roots of a semisimple Lie algebra come in pairs $\{\alpha, -\alpha\}$. Show that we have dim $(H) \leq s$, where H is the Cartan subalgebra. Give an example of a semisimple Lie algebra L for which dim(H) = s.
- 4. Let *H* be a vector space over a field *k*, and let (,) be a symmetric bilinear form on *H*. If $\{h_1, \ldots, h_l\}$ is a basis for *H* and if $a_{ij} = (h_i, h_j)$, prove that (,) is nondegenerate if and only if (a_{ij}) is a nonsingular matrix.