MATH 8174: Assignment 8

1. Show that the three matrices

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

form a basis for the Lie algebra $\mathfrak{s l}_{2}(k)$. Work out the 3^{3} structure constants with respect to this basis.
2. Let X, Y and Z be subspaces of the Lie algebra L. Show that:
(a) $[X, Y]=[Y, X]$;
(b) X is a subalgebra if and only if $X^{2} \subseteq X$;
(c) $[[X, Y], Z] \subseteq[[Y, Z], X]+[[Z, X], Y]$. Also,
(d) show that any bracketing of an n-fold product $[\cdots[[[X, X], X], X], \cdots X]$ is contained in X^{n}.
3. Let $\theta: L \rightarrow M$ be a homomorphism of Lie algebras. Show that $[L, \operatorname{ker}(\theta)] \subseteq$ $\operatorname{ker}(\theta)$.
4. Let $n \geq 2$ and let S denote the set of all $n \times n$ skew-symmetric matrices over k, where k is a field of characteristic different from 2 . Show that S is a subalgebra of $\mathfrak{g l}_{n}(k)$, but not of $M_{n}(k)$.
5. Let J and K be ideals of L. Show that $[J, K], J+K$ and $J \cap K$ are also ideals of L. Show that the center $Z(L)$ of L is an ideal of L.
6. Let L be a 2 -dimensional Lie algebra over k, and suppose that $L^{2} \neq 0$. Show that L is isomorphic to $\mathfrak{s l}_{2}(k) \cap \mathfrak{t}_{2}(k)$, where $\mathfrak{t}_{2}(k)$ is the Lie algebra of upper triangular 2×2 matrices over k. What happens in characteristic 2 ?
7. Let J and K be ideals of L with $J \leq K$. Prove that $K / J \unlhd L / J$ and that $(L / J) /(K / J) \cong L / K$.
8. Let L be a nonabelian 2-dimensional Lie algebra. Show the center of $L, Z(L)$, is trivial.

