MATH 8174: Assignment 1

1. Let G be an abelian group. Show that every irreducible representation of G over \mathbb{C} is one-dimensional.
2. Suppose that V is a one-dimensional representation of G. Show that every element of the commutator subgroup $G^{\prime}=[G, G]$ acts as the identity matrix on V.
3. By considering the four long diagonals of a cube, prove that the group of rotations of a cube is isomorphic to the symmetric group S_{4}. Write down matrices for the rotations corresponding to the permutations (12) and (1234).
4. Given any prime p, find an example of a two-dimensional representation of some finite group over some field of characteristic p that is indecomposable but not irreducible. Find also an example of such a representation in characteristic zero for an infinite group. (Hint: try the group of integers.)
5. The group of rotations of a regular dodecahedron is isomorphic to the alternating group A_{5}. Use this to prove that the group A_{5} has an irreducible 3-dimensional representation over \mathbb{C}. (You do not need to find explicit matrices. In fact, please don't.)
