1. Definitions

There are more than a few. I’ll use \(\mathbb{R} \) for \(\mathbb{R} \cup \{ \pm \infty \} \).

Partition: A *partition* of \([a, b]\) is a collection of points \(\{x_0, \ldots, x_m\} \) so that \(x_0 = a, x_m = b \) and \(x_{i-1} < x_i \) for \(i = 1, \ldots, m \).

Variation: The *variation* of \(f \) over \([a, b]\) is defined by

\[
V = V[f; a, b] = \sup_{\Gamma} S_{\Gamma},
\]

where \(S_{\Gamma} \) is the sum

\[
\sum_{i=1}^{m} |f(x_i) - f(x_{i-1})|
\]

and the supremum is taken over all partitions \(\Gamma \) of \([a, b]\). Intuitively, the variation is how much \(f \) moves up and down over the interval \([a, b]\).

Function of Bounded Variation: one with \(V[f; a, b] \) finite.

Function of Unbounded Variation: one with \(V[f; a, b] = +\infty \).

Positive Variation: The *positive variation* of \(f \) over \([a, b]\) is defined by

\[
P = P[f; a, b] = \sup_{\Gamma} P_{\Gamma},
\]

where

\[
P_{\Gamma} = \sum_{i=1}^{m} (f(x_i) - f(x_{i-1}))^+
\]

and the supremum is taken over all partitions \(\Gamma \) of \([a, b]\). Intuitively, the positive variation is how much \(f \) moves up over the interval \([a, b]\).

Negative Variation: The *negative variation* of \(f \) over \([a, b]\) is defined by

\[
N = N[f; a, b] = \sup_{\Gamma} N_{\Gamma},
\]

where

\[
N_{\Gamma} = \sum_{i=1}^{m} (f(x_i) - f(x_{i-1}))^-
\]

and the supremum is taken over all partitions \(\Gamma \) of \([a, b]\). Intuitively, the negative variation is how much \(f \) moves down over the interval \([a, b]\).

Rectifiable Curve: Intuitively, a curve with finite length. Formally, the length \(L \) of a curve \(C \) with coordinate functions \(\phi : [a, b] \to \mathbb{R} \) and \(\psi : [a, b] \to \mathbb{R} \) is defined as the supremum (over \(\Gamma \)) of the sums

\[
L(\Gamma) = \sum_{i=1}^{m} \sqrt{(\phi(t_i) - \phi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1}))^2}
\]
where Γ is a partition $\{t_0 = a, \ldots, t_m = b\}$ of $[a, b]$. We say C is a rectifiable curve if L is finite.

Norm of a Partition: The norm $|\Gamma|$ of a partition Γ is the length of the largest interval of Γ. That is, if $\Gamma = \{x_0, \ldots, x_n\}$, $|\Gamma| = \max_i \{x_i - x_{i-1}\}$.

Riemann-Stieltjes Integral: Intuitively, the Riemann integral with a change of variables built in. Formally, let f and ϕ be two functions which are defined and finite on a finite interval $[a, b]$. If $\Gamma = \{a = x_0 < x_1 < \cdots < x_m = b\}$ is a partition of $[a, b]$, we arbitrarily select intermediate points $\{\xi_i\}_{i=1}^m$ satisfying $x_{i-1} \leq \xi_i \leq x_i$, and write

$$R_\Gamma = \sum_{i=1}^m f(\xi_i)(\phi(x_i) - \phi(x_{i-1})).$$

R_Γ is called a Riemann-Stieltjes sum for Γ, and of course depends on ξ_i, f, ϕ, etc, but we don’t bother to indicate this dependence in our notation. Then, if $I = \lim_{|\Gamma| \to 0} R_\Gamma$ exists and is finite, that is, if given $\epsilon > 0$ there is a $\delta > 0$ such that $|I - R_\Gamma| < \epsilon$ for any Γ satisfying $|\Gamma| < \delta$, then I is called the Riemann-Stieltjes integral of f with respect to ϕ on $[a, b]$, and denoted

$$I = \int_a^b f(x) \, d\phi(x) = \int_a^b f \, d\phi.$$

Step Function: A function ϕ whose domain may be partitioned into finitely many intervals so that ϕ is constant on each interval.

Lebesgue Outer Measure: Intuitively, the smallest volume of intervals that cover E. Formally, let E be a subset of \mathbb{R}^n. Cover E by a countable collection S of n-dimensional closed intervals I_k, and let

$$\sigma(S) = \sum_{I_k \in S} v(I_k),$$

where v is the n-volume of the interval I_k. The Lebesgue outer measure (or exterior measure) of E, denoted $|E|_e$, is defined by

$$|E|_e = \inf \sigma(S),$$

where the infimum is taken over all such covers S of E.

Lebesgue Measurable Set: Intuitively, a set which is well approximated by a collection of intervals. Formally, a subset E of \mathbb{R}^n is said to be Lebesgue measurable, or simply measurable, if given $\epsilon > 0$, there exists an open set G such that

$$E \subset G \text{ and } |G - E|_e < \epsilon.$$

(Note that open sets are precisely those that can be expressed as a countable union of open intervals, hence the intuitive interpretation.)

Lebesgue Measure: If E is Lebesgue measurable, we define its measure $|E|$ to be its outer measure $|E|_e$. Intuitively, this is the volume of E.

\(\sigma\)-Algebra: A collection of sets Σ that is closed under complements, countable unions, and countable intersections. (The first two properties imply the third.)

Borel Set: A set obtainable by complements, countable unions, and countable intersections from open sets in finitely many steps. Alternatively, a member of the σ-algebra generated by the open subsets of \mathbb{R}^n.
Almost Everywhere: A property is said to hold *almost everywhere* (or a.e if we’re feeling lazy) on a set E, if the set of points of E where it does *not* hold has measure zero.

Measurable Function: A function $f : \mathbb{R}^n \to \mathbb{R}$ so that the preimage of each interval $(a, \infty]$ is a measurable set for each finite $a \in \mathbb{R}$. Intuitively, these are the functions so that the Lebesgue integral makes sense.

Upper-semicontinuous Function: Intuitively, a function whose limsups are not too large. Formally, $f : E \subset \mathbb{R}^n \to \mathbb{R}$ is upper semicontinuous (or usc if we’re feeling lazy) at x_0 if

$$\limsup_{x \to x_0; x \in E} f(x) \leq f(x_0).$$

Alternatively, we have exactly one half of the ϵ-δ definition of continuity: f is usc at x_0 if for all $\epsilon > 0$ there exists $\delta > 0$ so that for all $x \in E$ with $|x - x_0| < \delta$ it follows that

$$f(x) - f(x_0) < \epsilon.$$

Lower-semicontinuous Function: Intuitively, a function whose liminfs are not too small. Formally, $f : E \subset \mathbb{R}^n \to \mathbb{R}$ is lower semicontinuous (or lsc if we’re feeling lazy) at x_0 if

$$\liminf_{x \to x_0; x \in E} f(x) \geq f(x_0).$$

Alternatively, we have the other half of the ϵ-δ definition of continuity: f is lsc at x_0 if for all $\epsilon > 0$ there exists $\delta > 0$ so that for all $x \in E$ with $|x - x_0| < \delta$ it follows that

$$-\epsilon < f(x) - f(x_0).$$

Property \mathcal{C}: Intuitively, discontinuous in only a set of arbitrarily small measure. Formally, f has property \mathcal{C} on E if given $\epsilon > 0$, there is a closed set $F \subset E$ such that

1. $|E - F| < \epsilon$
2. f is continuous relative to F.

If E is measurable, then this is equivalent to f being measurable on E. (This definition appears to be endemic to our textbook.)

Convergence in Measure: A sequence of functions f_k is said to converge in measure to f on E (written $f_k \overset{m}{\to} f$) if for every $\epsilon > 0$,

$$\lim_{k \to \infty} |\{x \in E : |f(x) - f_k(x)| > \epsilon\}| = 0.$$

Intuitively, the size of the set where f_k is far from f can be made to have arbitrarily small measure by choosing k large.

Lebesgue Integral: This is defined in two steps. For the first step, let $f : E \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ be a non-negative function. Define

$$R(f, E) = \{(x, y) \in \mathbb{R}^{n+1} : x \in E, y \in \mathbb{R}, 0 \leq y \leq f(x)\}.$$

This is the region between 0 and the graph of f. If $R(f, E)$ is measurable, we define the Lebesgue integral of f over E as

$$|R(f, E)|_{n+1} = \int_E f(x) \, dx.$$
In the case that f is not non-negative, we define
\[
\int_E f(x) \, dx = \int_E f^+ \, dx - \int_E f^- \, dx
\]
provided that at least one of the integrals on the right is finite.

Simple Function: A function f is simple if it takes finitely many values.

Integrable Function: A function $f : E \subset \mathbb{R}^n \to \mathbb{R}$ is integrable if $\int_E f$ exists and is finite.

L^p Space: $L^p(E)$, $0 < p < \infty$ is the set of functions $f : E \to \mathbb{R}$ so that $|f|^p$ is integrable over E. In particular, if f is integrable, $f \in L(E)$.

Equimeasurable: Two functions $f, g : E \subset \mathbb{R}^n \to \mathbb{R}$ are equimeasurable or equidistributed if
\[
|\{x \in E : f(x) > \alpha\}| = |\{x \in E : f(x) > \alpha\}|
\]
for all α. In the notation of §5.4, $\omega_{f,E} = \omega_{g,E}$.

Convolution: If f and g are measurable functions in \mathbb{R}^n, their convolution $(f * g)(x)$ is defined by
\[
(f * g)(x) = \int_{\mathbb{R}^n} f(x - t)g(t) \, dt.
\]

Set Function: A set function is a real-valued function F defined on a σ-algebra Σ of measurable sets such that
1. $F(E)$ is finite for every $E \in \Sigma$,
2. F is countably additive; i.e., if $E = \bigcup_k E_k$ is a union of disjoint $E_k \in \Sigma$, then
\[
F(E) = \sum_k F(E_k).
\]

Indefinite Integral: If $f \in L(A)$, where A is a measurable subset of \mathbb{R}^n, the indefinite integral of f is defined to be the set function
\[
F(E) = \int_E f,
\]
where E is any measurable subset of A.

Continuous Set Function: A set function $F(E)$ is called continuous if $F(E) \to 0$ as the diameter $\sup\{||x - y| : x, y \in E\}$ tends to 0; that is, $F(E)$ is continuous if, given $\epsilon > 0$, there exists $\delta > 0$ such that $|F(E)| < \epsilon$ whenever the diameter of E is less than δ.

Absolutely Continuous Set Function: A set function $F(E)$ is called absolutely continuous if $F(E)$ tends to zero as the measure of E tends to zero. If you like ϵs and δs, F is absolutely continuous if given $\epsilon > 0$, there exists $\delta > 0$ such that $|F(E)| < \epsilon$ whenever the measure of E is less than δ.

Hardy-Littlewood Maximal Function: If f is a function defined on \mathbb{R}^n and integrable over every cube Q, we define the Hardy-Littlewood maximal function of f by
\[
f^*(x) = \sup_{|Q|} \frac{1}{|Q|} \int_Q |f(y)| \, dy
\]
where the supremum is taken over all Q with edges parallel to the coordinate axes and center x. Other sources tend to define this in terms of balls centered at x rather than cubes.
Weak $L(\mathbb{R}^n)$: A function f belongs to $\text{weak } L(\mathbb{R}^n)$ if there is a constant c independent of α so that
\[|\{ x \in \mathbb{R}^n : |f(x)| > \alpha \} | \leq \frac{c}{\alpha} \]
for all $\alpha > 0$. These are functions that obey Tchebyshev’s Inequality except they get the constant wrong.

Locally Integrable: A function f is locally integrable on E if it is integrable over every bounded measurable subset of E.

Point of Density: x is a point of density of E if
\[\lim_{Q \searrow x} \frac{|E \cap Q|}{|Q|} = 1. \]

Point of Dispersion: x is a point of dispersion of E if
\[\lim_{Q \searrow x} \frac{|E \cap Q|}{|Q|} = 0. \]

Cover in the Sense of Vitali: A family K of cubes is said to cover a set E in the Vitali sense if for every $x \in E$ and $\eta > 0$, there is a cube in K containing x whose diameter is less than η.

Absolutely Continuous Function: A finite function f on a finite interval $[a,b]$ is said to be absolutely continuous if given $\epsilon > 0$, there exists $\delta > 0$ such that for any collection $\{[a_i, b_i]\}$ (finite or countable) of nonoverlapping subintervals of $[a,b]$,

Singular Function: A function f is singular on $[a,b]$ if f' is zero a.e. in $[a,b]$.

Convex Function: Let ϕ be defined and finite on an interval (a,b). We say ϕ is convex in (a,b) if for every $[x_1, x_2]$ in (a,b), the graph of ϕ on $[x_1, x_2]$ lies on or below the line segment connecting the points $(x_1, \phi(x_2))$ and $(x_2, \phi(x_2))$. In other words, the region above the graph of ϕ is convex.

2. Frequently Cited and Otherwise Important Theorems

3. Examples

3.1. The Dirichlet Function. This is the function defined on $[0,1]$ by
\[f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases} \]
This function is integrable, but not Riemann-integrable. It is defined on a finite interval, but has unbounded variation.

3.2. The Cantor Set. You know what this is. It is uncountable, but has measure 0.

3.3. The Cantor-Lebesgue Function. Singular, but not constant. Has bounded variation.