Written Problems

1. Use the limit definition of the partial derivatives to find \(f_x(3, 2) \) and \(f_y(3, 2) \) for the function
\[
f(x, y) = \frac{x^2}{y + 1}.
\]

2. Let \(f(x, y) \) be a function of two variables.

 (a) If \(f_x(a, b) \) or \(f_y(a, b) \) is non-zero, use local linearization to show that an equation of the line tangent to the contour of \(f \) at \((a, b)\) is
 \[
f_x(a, b)(x - a) + f_y(a, b)(y - b) = 0.
 \]

 (b) Find the slope of the tangent line if \(f_y(a, b) \neq 0 \).

 (c) Find an equation for the tangent line to the contour of \(f(x, y) = x^2 + xy \) at \((3, 4)\).

3. Let \(f \) be a differentiable function of one variable. Show that all tangent planes to the surface
\[
z = xf\left(\frac{y}{x}\right)
\]
intersect at a common point.

Presentation Problems

4. Define \(f(x, y) = \left(\int_3^x e^t^2 dt\right)y \). Find the directional derivative of \(f \) at the point \((3, 1)\) in the direction of the vector \(\vec{v} = (2, 3) \).

5. Let \(k > 0 \). Show that the volume in the first octant, bounded by the coordinate planes and any tangent plane of \(xyz = k \), \(x, y > 0 \) depends only on \(k \). (Hint: For \(a, b, c > 0 \), the volume in the first octant under the plane \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \) is \(abc/3! \).)

6. (a) Let \(z = f(x, y) \) and \(z = g(x, y) \) be differentiable surfaces. Show that if \(\nabla f \cdot \nabla g = -1 \) at a point of intersection, then the surfaces are perpendicular at that point.

 (b) Show that the surfaces \(z = \frac{1}{2}(x^2 + y^2 - 1) \) and \(z = \frac{1}{2}(1 - x^2 - y^2) \) are perpendicular at all points of intersection.