MATH 2300, Calc 2

Calculating integrals - the big picture

January 15, 2015
Techniques you know so far:
Techniques you know so far:

- Simplify integrand, or write in a different form
Techniques you know so far:

▶ Simplify integrand, or write in a different form
▶ u/du substitution
Techniques you know so far:

- Simplify integrand, or write in a different form
- u/du substitution
- Integration by parts
Techniques you know so far:

- Simplify integrand, or write in a different form
- u/du substitution
- Integration by parts
What technique do you think would work best?

\[\int \frac{x^3 + \sqrt{x}}{\sqrt{x}} \, dx \]
What technique do you think would work best?

\[\int \frac{x^3 + \sqrt{x}}{\sqrt{x}} \, dx \]

Simplify (distribute the denominator)
What technique do you think would work best?

\[\int \frac{x^3 + \sqrt{x}}{\sqrt{x}} \, dx \]

Simplify (distribute the denominator)
What technique do you think would work best?

\[\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} \, dx \]

\[u/du \text{ substitution}, \quad u = \sqrt{x}, \quad du = \frac{1}{2\sqrt{x}} \, dx \]
What technique do you think would work best?

\[
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} \, dx = \int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} \, dx
\]
What technique do you think would work best?

\[
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} \, dx = \int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} \, dx
\]

u/du substitution,
What technique do you think would work best?

\[
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} \, dx = \int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} \, dx
\]

u/du substitution, \(u = \sqrt{x} \),
What technique do you think would work best?

\[
\int \frac{\sec \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} \, dx = \int \sec \sqrt{x} \tan \sqrt{x} \cdot \frac{1}{\sqrt{x}} \, dx
\]

u/du substitution, \(u = \sqrt{x}, \ du = \frac{1}{2\sqrt{x}} \, dx \)
What technique do you think would work best?

\[\int x \ln x \, dx \]
What technique do you think would work best?

\[\int x \ln x \, dx \]

Integration by parts,
What technique do you think would work best?

\[\int x \ln x \, dx \]

Integration by parts, \(u = \ln x, \ dv = x \, dx \)
What technique do you think would work best?

\[\int \frac{\ln x}{x} \, dx \]
What technique do you think would work best?

\[
\int \frac{\ln x}{x} \ dx = \int \ln x \cdot \frac{1}{x} \ dx
\]
What technique do you think would work best?

\[
\int \frac{\ln x}{x} \, dx = \int \ln x \cdot \frac{1}{x} \, dx
\]

u/du substitution,
What technique do you think would work best?

\[
\int \frac{\ln x}{x} \, dx = \int \ln x \cdot \frac{1}{x} \, dx
\]

\(u/du\) substitution, \(u = \ln x\),
What technique do you think would work best?

\[\int \frac{\ln x}{x} \, dx = \int \ln x \cdot \frac{1}{x} \, dx \]

u/du substitution, \(u = \ln x, \ du = \frac{1}{x} \, dx \)
What technique do you think would work best?

\[\int \frac{\arcsin x}{\sqrt{1 - x^2}} \, dx \]
What technique do you think would work best?

\[
\int \frac{\arcsin x}{\sqrt{1 - x^2}} \, dx \quad \int \arcsin x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx
\]
What technique do you think would work best?

\[\int \frac{\arcsin x}{\sqrt{1 - x^2}} \, dx = \int \arcsin x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx \]

u/du substitution,
What technique do you think would work best?

\[
\int \frac{\arcsin x}{\sqrt{1-x^2}} \, dx \quad \int \arcsin x \cdot \frac{1}{\sqrt{1-x^2}} \, dx
\]

\(u/d\) substitution, \(u = \arcsin x\),
What technique do you think would work best?

\[
\int \frac{\arcsin x}{\sqrt{1 - x^2}} \, dx \int \arcsin x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx
\]

u/du substitution, \(u = \arcsin x \), \(du = \frac{1}{\sqrt{1-x^2}} \, dx \)
What technique do you think would work best?

\[\int x^2 \sin x \, dx \]
What technique do you think would work best?

\[\int x^2 \sin x \, dx \]

Integration by parts,
What technique do you think would work best?

$$\int x^2 \sin x \, dx$$

Integration by parts, $u = x^2$, $dv = \sin x \, dx$
What technique do you think would work best?

\[\int x \sin x^2 \, dx \]
What technique do you think would work best?

\[\int x \sin x^2 \, dx \]

u/du substitution,
What technique do you think would work best?

\[\int x \sin x^2 \, dx \]

u/du substitution, \(u = x^2 \),
What technique do you think would work best?

\[\int x \sin x^2 \, dx \]

\(u/du \) substitution, \(u = x^2 \), \(du = 2x \, dx \)