Worksheet Purpose: A few weeks ago we saw that a given improper integral converges if its integrand is less than the integrand of another integral known to converge. Similarly a given improper integral diverges if its integrand is greater than the integrand of another integral known to converge. In problems 1-7 you’ll apply a similar strategy to determine if certain series converge or diverge. Additionally, in problems 8 and 9 you’ll apply a different method (using limits) to determine if a series converges or diverges.

1. For each of the following situations, determine if \(\sum_{n=1}^{\infty} c_n \) converges, diverges, or if one cannot tell without more information.

 (a) \(0 \leq c_n \leq \frac{1}{n} \) for all \(n \), we can conclude that \(\sum c_n \) _________________

 (b) \(\frac{1}{n} \leq c_n \) for all \(n \), we can conclude that \(\sum c_n \) _________________

 (c) \(0 \leq c_n \leq \frac{1}{n^2} \) for all \(n \), we can conclude that \(\sum c_n \) _________________

 (d) \(\frac{1}{n^2} \leq c_n \) for all \(n \), we can conclude that \(\sum c_n \) _________________

 (e) \(\frac{1}{n^2} \leq c_n \leq \frac{1}{n} \) for all \(n \), we can conclude that \(\sum c_n \) _________________

2. Follow-up to problem 1: For each of the cases above where you needed more information, give (i) an example of a series that converges and (ii) an example of a series that diverges, both of which satisfy the given conditions.

3. Fill in the blanks:

 | The Comparison Test (also known as Term-size Comparison Test or Direct Comparison Test) |
 | Suppose that \(\sum a_n \) and \(\sum b_n \) are series with positive terms. |
 | - If \(\sum b_n \) ____________ and \(a_n \leq b_n \), then \(\sum a_n \) also _____________. |
 | - If \(\sum b_n \) ____________ and \(a_n \geq b_n \), then \(\sum a_n \) also _____________. |

Note: in the above theorem and for the rest of this worksheet, we will use \(\sum b_n \) to represent the series whose convergence/divergence we already know (p-series or geometric), and \(\sum a_n \) will represent the series we are trying to determine convergence/divergence of.
Now we’ll practice using the Comparison Test:

4. Let \(a_n = \frac{1}{2^n + n} \) and let \(b_n = \left(\frac{1}{2}\right)^n \) for \(n \geq 1 \), both sequences with positive terms.

(a) Does \(\sum_{n=1}^{\infty} b_n \) converge or diverge? Why?

(b) How do the size of the terms \(a_n \) and \(b_n \) compare?

(c) What can you conclude about \(\sum_{n=1}^{\infty} \frac{1}{2^n + n} \)?

5. Let \(a_n = \frac{1}{n^2 + n + 1} \), a sequence with positive terms.
Consider the rate of growth of the denominator. This hints at a choice of:

\[b_n = \text{another positive term sequence}. \]

(a) Does \(\sum b_n \) converge or diverge? Why?

(b) How do the size of the terms \(a_n \) and \(b_n \) compare?

(c) What can you conclude about \(\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1} \)?

6. Use the Comparison Test to determine if \(\sum_{n=2}^{\infty} \frac{\sqrt{n^4 + 1}}{n^3 - 2} \) converges or diverges.
7. Use the Comparison test to determine if \(\sum_{n=1}^{\infty} \frac{\cos^2 n}{\sqrt{n^3} + n} \) converges or diverges.

8. Disappointingly, sometimes the Comparison Test doesn’t work like we wish it would. For example, let \(a_n = \frac{1}{n^2 - 1} \) and \(b_n = \frac{1}{n^2} \) for \(n \geq 2 \).

 (a) By comparing the relative sizes of the terms of the two sequences, do we have enough information to determine if \(\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{1}{n^2 - 1} \) converges or diverges?

 (b) Show that \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \).

 (c) Since \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \), we know that \(a_n \approx b_n \) for large values of \(n \). Do you think that \(\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{1}{n^2 - 1} \) must converge?
When we have chosen a good series to compare to, but the inequalities don’t work in our favor, we use the Limit Comparison Test instead of the Comparison Test.

The Limit Comparison Test
Suppose \(a_n > 0 \) and \(b_n > 0 \) for all \(n \). If \(\lim_{n \to \infty} \frac{a_n}{b_n} = c \), where \(c \) is finite and \(c > 0 \), then the two series \(\sum a_n \) and \(\sum b_n \) either both converge or both diverge.

Now we’ll practice using the Limit Comparison Test:

9. Determine if the series \(\sum_{n=2}^{\infty} \frac{n^3 - 2n}{n^4 + 3} \) converges or diverges.