Area accumulation functions and the FTC, analytical perspective

1. Let \(F(x) = \int_{3}^{x} e^{5t} dt \)

 (a) Find a formula for \(F(x) \) by anti-differentiating and substituting.

 \[F(x) = \frac{1}{5} \left(e^{5x} - e^{15} \right) \]

 (b) Differentiate to find \(F'(x) \).

 \[F'(x) = e^{5x} \]

 (c) Explain your result.

 In part (a) we found the area accumulated under \(e^{5t} \) between 3 and \(x \) expressed as a function of \(x \). In part (b) we found the instantaneous rate of change of area accumulation, which when we use an infinitely small change in \(x \), will be equal to the \(y \)-value, or height, of the function, which is given by \(y = e^{5x} \).

 (d) Why does the lower limit of integration not affect the derivative?

 The lower limit is constant and only shifts the area accumulation function; it does not affect its rate of change.

 (e) Using what you noticed and learned above, find \(\frac{d}{dx} \left[-\int_{-5}^{x} \arctan t \, dt \right] \).

 \[\cos (x) \ln (\sin x) \]

2. Let \(F(x) = \int_{4}^{x^2} \cos t \, dt \)

 (a) Find a formula for \(F(x) \) by anti-differentiating.

 \[F(x) = \sin x^2 - \sin 4 \]

 (b) Differentiate to find \(F'(x) \).

 \[F'(x) = 2x \cos x^2 \]

 (c) Using what you noticed and learned above, find \(\frac{d}{dx} \left[\int_{2}^{\sin x} \ln t \, dt \right] \).

 \[\cos (x) / \sin x \]
Find a general formula for what you discovered in the last problem:

3. If \(F(x) = \int_{0}^{g(x)} h(t) \, dt \), what is \(F'(x) \)?

4. If \(F(x) = \int_{x}^{0} h(t) \, dt \), what is \(F'(x) \)? (Hint: try an experiment on \(F(x) = \int_{x}^{0} \sec^2 t \, dt \))

5. If \(F(x) = \int_{x^2}^{1-x} \frac{t + 1}{t - 1} \, dt \), what is \(F'(x) \)?

Find a general formula for what you discovered in the last problem:

6. If \(F(x) = \int_{a(x)}^{b(x)} h(t) \, dt \), what is \(F'(x) \)?