1. Consider the symmetric group S_4 and the dihedral group D_8. For each group G

 (a) Give examples of two nonequivalent and nontrivial representations ρ and τ (be sure to show they are not equivalent),

 (b) Construct the corresponding G-modules V_ρ and V_τ,

 (c) Decide whether the modules are reducible,

 (d) Change bases in the module V_ρ and give the new corresponding representation $\rho' : G \to GL_n(\mathbb{C})$.

2. Show that if $\rho : G \to GL(V)$ is a degree one representation, then $G/\ker(\rho)$ is an abelian group.

3. Let $GL_2(\mathbb{F}_q)$ be the general linear group of rank 2 with entries in the field \mathbb{F}_q with q elements. Consider the subalgebra of $\mathbb{C}GL_2(\mathbb{F}_q)$ given by

 $\mathcal{H}_2(q) = e_B \mathbb{C}GL_2(\mathbb{F}_q)e_B$, where $e_B = \frac{1}{q} \sum_{r,s \in \mathbb{F}_q^\times} \sum_{t \in \mathbb{F}_q} \begin{pmatrix} r & t \\ 0 & s \end{pmatrix}$.

 (This is the Iwahori-Hecke algebra $\mathcal{H}_2(q)$).

 (a) Find a basis for $\mathcal{H}_2(q)$.

 (b) Give formulas for multiplying basis elements.

 (c) Construct a nontrivial $\mathcal{H}_2(q)$-module that is not the regular module.