Math 6250: Homework 2

- 1. Let C_n be the cyclic group of order n.
 - (a) Completely classify the irreducible C_n -modules over the complex numbers \mathbb{C} ,
 - (b) Show how to decompose the regular module $\mathbb{C}C_n$ in terms of irreducibles. That is, find an explicit basis $\mathcal{B} \subseteq \mathbb{C}C_n$ such that for each $b \in \mathcal{B}$, \mathbb{C} -span $\{b\}$ is a submodule of $\mathbb{C}C_n$.
- 2. Let V be a completely reducible A-module over an algebraically closed field \mathbb{F} . Prove the converse of Schur's Lemma. That is, if for every A-module homomorphism $\theta : V \to V$ there exists $c \in \mathbb{F}$ such that $\theta(v) = cv$, then V is irreducible.
- 3. Let A be a semisimple finite dimensional algebra. The degree sequence of a A is the sequence $\{\dim(A^{\lambda}) \mid \lambda \in \hat{A}\}$. Suppose $|\dim(A)| = 20$ and $\operatorname{char}(\mathbb{F})$ does not divide $\dim(A^{\lambda})$, $\lambda \in \hat{A}$.
 - (a) Show that A has at least one dimension 1 module.
 - (b) Show that G has less than 10 possible degree sequences.
 - (c) If $A = \mathbb{F}G$, then it turns out that $\dim(\mathbb{F}G^{\lambda})$ divides |G|. Using this fact, show that in this case $\mathbb{F} \cdot G$ must have at least 4 different one-dimensional modules.
- 4. (13.4 in book).
 - (a) Let I be a proper ideal of a semisimple ring R. Show that R/I is also semisimple.
 - (b) Give an example to show that subrings of semisimple rings need not be semisimple.
- 5. Let A be a semisimple algebra. Suppose $V \subseteq A$ is a submodule of the regular module A.
 - (a) Show that there exists an idempotent $e \in A$ (an element such that $e^2 = e$) such that

$$V = Ae.$$

(b) Show that if $\theta \in \text{Hom}_A(V, A)$, then

$$\theta(v) = va$$
, for some $a \in A$.

(c) Show that

$$\operatorname{End}_A(V) \cong eAe,$$

as vector spaces.

Remark: One can show that the two spaces in (c) are in fact anti-isomorphic as algebras.