Math 4140: Homework 7

Due March 4, 2009

- 1. For the following graphs,
 - (a) Find the corresponding Cartan matrix,
 - (b) Find a set B of basis vectors in \mathbb{R}^6 such that the graph is the Dynkin diagram of B.

2. Suppose R is a root system in V. Let

$$R^{\vee} = \{ \alpha^{\vee} \mid \alpha \in R \}.$$

- (a) Show that R^{\vee} is a root system of V.
- (b) Show that its Cartan matrix is the transpose of the Cartan matrix of R.
- (c) Show that $R(B_n)^{\vee} = R(C_n)$, and $R(D_n)^{\vee} = R(D_n)$ (see Homework 6).
- (d) Explain why R and R^{\vee} are not always isomorphic?

We typically call R^{\vee} the dual root system to R.

3. Let

$$C_n = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

Show that

- (a) $\det(C_n) = 2 \det(C_{n-1}) \det(C_{n-2})$ for $n \ge 3$,
- (b) Find a formula for $\det(C_n)$ (a non-recursive formula).

Hint: Look up the Laplace expansion for the determinant of a matrix.