Math 4140: Homework 7

Due March 4, 2009

1. For the following graphs,
 (a) Find the corresponding Cartan matrix,
 (b) Find a set B of basis vectors in \mathbb{R}^6 such that the graph is the Dynkin diagram of B.

2. Suppose R is a root system in V. Let
 $$R^\vee = \{ \alpha^\vee \mid \alpha \in R \}.$$
 (a) Show that R^\vee is a root system of V.
 (b) Show that its Cartan matrix is the transpose of the Cartan matrix of R.
 (c) Show that $R(B_n)^\vee = R(C_n)$, and $R(D_n)^\vee = R(D_n)$ (see Homework 6).
 (d) Explain why R and R^\vee are not always isomorphic?

 We typically call R^\vee the dual root system to R.

3. Let
 $$C_n = \begin{pmatrix}
 2 & -1 & 0 & \cdots & 0 \\
 -1 & 2 & -1 & \ddots & \vdots \\
 0 & \ddots & \ddots & \ddots & 0 \\
 \vdots & \ddots & -1 & 2 & -1 \\
 0 & \cdots & 0 & -1 & 2
 \end{pmatrix}$$

 Show that
 (a) $\det(C_n) = 2 \det(C_{n-1}) - \det(C_{n-2})$ for $n \geq 3$,
 (b) Find a formula for $\det(C_n)$ (a non-recursive formula).

 Hint: Look up the Laplace expansion for the determinant of a matrix.