Math 4140: Homework 2

Due January 28, 2009

- 1. Let R be a ring. An element $a \in R$ is nilpotent if $a^n = 0$ for some $n \in \mathbb{Z}_{\geq 1}$.
 - (a) Show that if $a, b \in R$ are nilpotent elements of a commutative ring, then a + b is nilpotent.
 - (b) Find an example that shows that the converse of (a) is not true.
 - Hint: Think about nilpotent elements in $M_2(\mathbb{Z})$.
 - (c) Show that R has no nonzero nilpotent elements if and only if the equation $x^2 = 0$ has only one solution in R.
- 2. (a) Find an example of a ring R with a multiplicative identity 1, and a subring $U \subseteq R$ with a different multiplicative identity 1'.
 - Hint: Think about subrings of $M_2(\mathbb{Z})$, or subrings of $\mathbb{Z}/6\mathbb{Z}$.
 - (b) Show that (a) cannot happen if R is a field.
- 3. Let F be a field with multiplicative identity 1. The *characteristic* of F is the smallest integer $n \in \mathbb{Z}_{\geq 1}$ such that $n \cdot 1 = 0$. If no such n exists, then the characteristic of F is 0.
 - (a) Show that if $s, t \in F$, then st = 0 implies s = 0 and/or t = 0,
 - (b) Use (a) to show that if the characteristic is nonzero, then the characteristic is a prime number.
 - Hint: Factor $(pq) \cdot 1$.
 - (c) Show that if p is the characteristic of F, then pt = 0 for all $t \in F$.