Math 3140: Homework 9

- A. Find an example of a homomorphism that is neither injective nor surjective.
- B. 15.2 Find all normal subgroups of D_n .
 - 15.7 Let $K \triangleleft G \times H$ be such that

$$K \cap (\{1_G\} \times H) = \{(1_G, 1_H)\} = K \cap (G \times \{1_H\}).$$

Show that K must be abelian.

- 15.12 Find a proper normal subgroup of A_4 . Show that any non-trivial normal subgroup H of A_5 must contain a 3-cycle, and use 14.5 to conclude that $H = A_5$, thereby proving A_5 is simple.
- 15.13. Suppose H is a cyclic normal subgroup of G. Show that any subgroup of H is also normal in G.
 - (2) A group G is meta-abelian if there exists and abelian normal subgroup $A \triangleleft G$ such that G/A is also abelian. Show that G is meta-abelian if and only if [[G,G],[G,G]]=1 (the commutator subgroup of the commutator subgroup).
 - (3) Find the commutator subgroup of $W_{2,n}$.
- C. 16.4. Show that if $A \triangleleft G$ and $B \triangleleft H$, then $(A \times B) \triangleleft (G \times H)$ and

$$(G \times H)/(A \times B) \cong (G/A) \times (G/B).$$