Math 3140: Homework 8

- A. 13.5 Let G be a group of order 4n+2. Show that G contains a group of order 2n+1. Hint: Use Cauchy's Theorem, Cayley's Theorem, and Exercise 6.6.
 - 14.2 Find the conjugacy classes for D_n for all n (be careful to distinguish between different cases).
 - 14.3 Suppose $\varphi: G \to H$ is an isomorphism of groups, and suppose C is a conjugacy class of G. Show that $\varphi(C)$ is a conjugacy class of H.
 - 14.5 Prove that the 3-cycles of A_5 form a single conjugacy class. Find two 5-cycles which are *not* conjugate in A_5 (though they are conjugate in S_5).
 - 14.10 Find the center of D_n for all n.
- B. (a) Suppose R and S are rings. Give a careful definition of what you think a ring homomorphism should be.
 - (b) Let $\varphi: R \to S$ be a ring homomorphism. Define the kernel of φ to be the set

$$\ker(\varphi) = \{ r \in R \mid \varphi(r) = 0 \}.$$

Show that for all $r \in R$ and $k \in \ker(\varphi)$,

$$rk, kr \in \ker(\varphi)$$
.

(c) An *ideal* of a ring R is a subring I such that

$$ri, ir \in I$$
 for all $i \in I$, $r \in R$.

Find a multiplicative function and an additive function that makes

$$R + I = \{r + I \mid r \in R\}$$

a ring.

(d) Show that $I \subseteq R$ is an ideal if and only if there exists a ring homomorphism $\varphi: R \to S$ for some ring S such that $I = \ker(\varphi)$.