Math 3140: Homework 7

A. Let $C_r = \langle x \rangle$ be the cyclic group with r elements (but written with multiplication, rather than addition). Let

$$W_{r,n} = \left\{ a \in M_n(C_r \cup \{0\}) \middle| \begin{array}{c} a \text{ has exactly one nonzero entry} \\ \text{in every row and every column} \end{array} \right\}.$$

- (a) Show that $W_{r,n}$ is a group.
- (b) Show that $W_{2,2} \cong D_4$.
- (c) What more familiar groups are $W_{1,n}$ and $W_{r,1}$ isomorphic to?
- (d) What is the order of $W_{r,n}$?
- B. 11.4 Suppose |G| is the product of two distinct primes. Show that any proper subgroup of G must be cyclic.
 - 11.7 Suppose $n \in \mathbb{Z}_{\geq 1}$ and m divides 2n. Show that D_n contains a group of order m.
 - 11.8 Does A_5 contain a subgroup of order m for every m that divides $|A_5| = 60$?
 - 12.4-5 Find examples of a group G and a subgroup H such that the following sets are **not** equivalence relations:
 - (a) $\{(x,y) \mid xy \in H\},\$
 - (b) $\{(x,y) \mid xyx^{-1}y^{-1} \in H\}.$
 - 12.8 Let H be a subgroup of a group G.
 - (a) Show that if |G| = 2|H|, then gH = Hg for all $g \in G$.
 - (b) Show that gH = Hg for all $g \in G$ if and only if $ghg^{-1} \in H$ for all $h \in H$, $g \in G$.
 - 13.2. Suppose G is abelian with |G| a product of distinct primes. Show that G is cyclic.
 - 13.4. Classify the groups of order 10.