Math 3140: Homework 5

A. 7.2 Verify that the set of integers $\{1,3,7,9,11,13,17,19\}$ form a group under multiplication modulo 20. Explain why this group is not isomorphic to \mathbb{Z}_{8}.
7.5 Show that the function

$$
\begin{array}{rlc}
\varphi: G & \longrightarrow & G \\
g & \mapsto & g^{-1}
\end{array}
$$

is an isomorphism if and only if G is abelian.
7.9 Suppose G is cyclic with generator $x \in G$. Show that if $\varphi: G \rightarrow H$ is an isomorphism, then φ is completely determined by $\varphi(x)$. Show that $H=\langle\varphi(x)\rangle$.
B. 8.7 Using Cayley's Theorem, explicitly find an isomorphic copy of D_{3} inside S_{6}.
8.10 For each $w \in S_{n}$, let $\tilde{w} \in S_{2 n}$ be the permutation given by

$$
\tilde{w}(j)= \begin{cases}w(j), & \text { if } 1 \leq j \leq n, \\ w(j-n)+n, & \text { if } n+1 \leq j \leq 2 n\end{cases}
$$

(a) Describe the relationship between the diagram of w and the diagram of \tilde{w}.
(b) Show that the function that sends $w \mapsto \tilde{w}$ is an isomorphism between S_{n} and a subgroup of $A_{2 n}$.
8.11 Let G be the full symmetry group of a regular tetrahedron T, and adopt the notation of Figure 7.2 in the book. Find the symmetry q of T which induces the transposition $(1,2)$ of the vertices, and show that $q r$ induces the 4 -cycle $(1,2,3,4)$. Check that $q r$ is neither a rotation nor a reflection, but is the product of three reflections. Count the symmetries of T and prove that G is isomorphic to S_{4}.

