Math 3140: Homework 11

17.1. Let $G=\langle(1,2,3)(4,5),(7,8)\rangle \subseteq S_{8}$. Then G acts on the set $X=\{1,2,3,4,5,6,7,8\}$. Calculate the orbits of the G-action in X, and the stabilizers of 1,2 and 7 .
17.4 Let G act on a set X, and let O be an orbit in G. Show that $\operatorname{Stab}_{G}(x)=\operatorname{Stab}_{G}(y)$ for all $x, y \in O$ if and only if $\operatorname{Stab}_{G}(x) \triangleleft G$.
17.7-8. The diagonal action. Suppose G acts on X and Y. Let

$$
\begin{array}{ccc}
G \times(X \times Y) & \longrightarrow & X \times Y \\
(g,(x, y)) & \mapsto & (g(x), g(y)) \tag{*}
\end{array}
$$

(a) Show that $(*)$ gives an action of G on $X \times Y$.
(b) For example, find the orbits of $G=\langle(1,2,3,4),(2,4)\rangle \subseteq S_{4}$ acting on $X \times X$ diagonally, where $X=\{1,2,3,4\}$. Is this action transitive?
(c) In general, find the stabilizer of $(x, y) \in X \times Y$ (in terms of the stablizers of x and y).
17.10. The centralizer of $g \in G$ is the subgroup

$$
C_{G}(g)=\left\{h \in G \mid h g h^{-1}=g\right\} .
$$

(a) Identify a set X with an action of G on that set such that $C_{G}(g)=\operatorname{Stab}_{G}(g)$ for that action.
(b) Show that if some conjugacy class of G has exactly two elements, then G is not simple.

