Math 3140: Homework 6

Due: Wednesday, October 16

- A. 9.1 Do either of the following sets of $n \times n$ matrices form a group?
 - (a) Diagonal matrices, $\{a \in M_n(\mathbb{R}) \mid a_{ij} = 0, i \neq j, a_{ii} \neq 0\}.$
 - (b) Symmetric matrices, $\{a \in M_n(\mathbb{R}) \mid a_{ij} = a_{ji}, 1 \leq i, j \leq n\}$.
 - 10.1 Show that if $G \times H$ is cyclic, then both G and H are cyclic.
 - 10.2 Show that $\mathbb{Z} \times \mathbb{Z}$ and \mathbb{Z} are not isomorphic.
 - 10.? Which of the following groups are isomorphic to one-another?

$$\mathbb{Z}_{24}$$
, $D_4 \times \mathbb{Z}_3$, D_{12} , $A_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times D_6$, S_4 , $\mathbb{Z}_{12} \times \mathbb{Z}_2$.

B. For p prime, let \mathbb{F}_p denote the set $\{0, 1, \dots, p-1\}$ where we add **and** multiply modulo p (as opposed to \mathbb{Z}_p where we just add). Define

$$U_n(\mathbb{F}_p) = \{ a \in M_n(\mathbb{F}_p) \mid a_{jj} = 1, 1 \le j \le n, a_{ji} = 0, 1 \le i < j \le n \}.$$

This group is called the group of unipotent, uppertriangular matrices with entries in \mathbb{F}_p .

- (a) What is the order of $U_3(\mathbb{F}_2)$? Show that $U_3(\mathbb{F}_2)$ is isomorphic to an already familiar group.
 - **Remark.** The group $U_3(\mathbb{F}_p)$ is often called the *Heisenberg group* and is useful in mathematical physics.
- (b) Show that $U_2(\mathbb{F}_p) \cong \mathbb{Z}_p$, and that if $n \geq 2$, then $U_2(\mathbb{F}_p)$ is isomorphic to a subgroup of $U_n(\mathbb{F}_p)$.
- C. (a) Show that $M_n(\mathbb{R})$ is a ring.
 - (b) Give a definition for what you think a subring should be.
 - (c) Give a definition for what you think a ring isomorphism should be.