1. From the book do problems:

(a) 5.4: 4, 5
(b) 6.1: 5, 10, 12
(c) 6.2: 1, 3, 6

2. Let \(R_n \) be the set of ways to place \(n \) non-attacking rooks on an \(n \times n \) chess-board.

(a) Let \(f : R_n \to \mathbb{Z} \) be given by

\[
f(r) = \text{number of rooks on the diagonal squares of } r, \quad \text{for } r \in R_n.
\]

For example, if \(n = 4 \),

\[
\begin{bmatrix}
\text{II} & \text{II} \\
* & \text{II} \\
\text{II} & *
\end{bmatrix}
= 2,
\]

where \(\begin{bmatrix} \text{II} & \text{II} \\ \text{II} & \text{II} \end{bmatrix} \in R_4 \),

and I've marked the diagonal squares with \(* \).

i. What is \(f(R_n) \)?
ii. Is \(f \) injective?
iii. Is \(f \) surjective?
iv. Find \(|f^{-1}(k)| \) for all \(k \in f(R_4) \).

(b) Find an injective function \(g : R_n \to \mathbb{Z} \) (without changing the sets \(R_n \) and \(\mathbb{Z} \)).