Math 2001: Homework 7

Due: October 22, 2008

Give complete justifications for all your answers.

Problem 1

1. Note that

\[20332 = 2 \cdot 299 \cdot 2 \cdot 17 = 391 \cdot 2 \cdot 13 \cdot 2. \]

Why does this not contradict the unique factorization of numbers into primes?

2. Write addition and multiplication tables for \(\mathbb{Z}_3 \) and \(\mathbb{Z}_4 \).

3. Suppose we wanted to “extend” the concept of divisibility to all integers, including 0. Let us say that an integer \(n \) is divisible by a number \(m \) if there exists an integer \(k \) such that \(n = km \).

 (a) What numbers are divisible by 0?
 (b) What does \(\mathbb{Z}_0 \) look like? How many elements does it have, and what do the congruence classes look like?
 (c) What does \(\mathbb{Z}_{-n} \) look like for negative integers \(-n \)?

Problem 2

1. Which of the following “rules” are true? Either prove or provide a counter-example.

 (a) If \(a \equiv b \pmod{c} \), then \(a + x \equiv b + x \pmod{c + x} \).
 (b) If \(a \equiv b \pmod{c} \), then \(ax \equiv bx \pmod{cx} \).

2. Prove that if \(p \) is prime, and \(0 < k < p \), then \(p \) divides \(\binom{p}{k} \). Why is \(p \) prime important for this to be true?

 Hint: Use the factorial description of \(\binom{p}{k} \).

3. Use the Binomial Theorem and the previous problem to show that if \(p \) is prime, then

\[(X + Y)^p \equiv X^p + Y^p \pmod{p}. \]