The Cartan Decomposition of a Complex

Semisimple Lie Algebra

Shawn Baland
University of Colorado, Boulder

November 29, 2007

Definition

Let k be a field. A k-algebra is a k-vector space A equipped with a bilinear map $A \times A \rightarrow A$ called multiplication.

Definition
A Lie algebra is a k-algebra \mathfrak{g} with multiplication $(x, y) \mapsto[x, y]$ satisfying the following conditions:
(i) $[x, x]=0 \quad$ for all $x \in \mathfrak{g}$.
(ii) $[[x, y], z]+[[y, z], x]+[[z, x], y]=0 \quad$ for all $x, y, z \in \mathfrak{g}$.

Condition (ii) is called the Jacobi identity.

Definition

We define the lower central series of \mathfrak{g} recursively by

$$
\mathfrak{g}^{1}=\mathfrak{g}, \quad \mathfrak{g}^{n+1}=\left[\mathfrak{g}^{n}, \mathfrak{g}\right] \quad \text { for } n \geq 1
$$

Proposition
Each \mathfrak{g}^{n} is an ideal of \mathfrak{g}, and $\mathfrak{g}=\mathfrak{g}^{1} \supset \mathfrak{g}^{2} \supset \mathfrak{g}^{3} \supset \cdots$.

Definition

- We say that \mathfrak{g} is nilpotent if $\mathfrak{g}^{n}=0$ for some n.
- We say that \mathfrak{g} is abelian if $\mathfrak{g}^{2}=0$.

Definition

We define the derived series of \mathfrak{g} recursively by

$$
\mathfrak{g}^{(0)}=\mathfrak{g}, \quad \mathfrak{g}^{(n+1)}=\left[\mathfrak{g}^{(n)}, \mathfrak{g}^{(n)}\right] \quad \text { for } n \geq 0
$$

Proposition

Each $\mathfrak{g}^{(n)}$ is an ideal of \mathfrak{g}, and $\mathfrak{g}=\mathfrak{g}^{(0)} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots$.
Definition
A Lie algebra \mathfrak{g} is solvable if $\mathfrak{g}^{(n)}=0$ for some n.

Proposition
Every nilpotent Lie algebra is solvable.

Proposition

Every finite-dimensional Lie algebra contains a unique maximal solvable ideal \mathfrak{r}. (This is called the solvable radical.)

Definition

A Lie algebra \mathfrak{g} is semisimple if $\mathfrak{r}=0$.

Definition

A Lie algebra \mathfrak{g} is simple if it contains no ideals other than itself and the zero ideal.

The 1-dimensional Lie algebra is called the trivial simple Lie algebra.

Proposition

Every non-trivial simple Lie algebra is semisimple.

Let $M_{m}(k)$ denote the ring of all $n \times n$ matrices over k. We define $\mathfrak{g l}_{n}(k)$ to be the Lie algebra $\left[M_{n}(k)\right]$ formed from $M_{n}(k)$ via the commutator product. We denote this Lie algebra by $\mathfrak{g l}_{n}(k)$.

Definition

A representation of a Lie algebra \mathfrak{g} is a homomorphism of Lie algebras $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}_{n}(k)$.

Definition

A \mathfrak{g}-module is a k-vector space V equipped with a left \mathfrak{g}-action $\mathfrak{g} \times V \rightarrow V$ satisfying the following properties:

- $(x, v) \mapsto x v$ is linear in x and v.
- $[x, y] v=x(y v)-y(x v)$ for all $x, y \in \mathfrak{g}, v \in V$.

Example

The vector space \mathfrak{g} forms a \mathfrak{g}-module via the action $(x, y) \mapsto[x, y]$.

- We have $[[x, y], z]=[x,[y, z]]-[y,[x, z]]$ by the Jacobi identity.
- We call this module the adjoint module and denote the action of x on the vector y by $\mathrm{ad} x \cdot y$.
- We have ad $[x, y]=\operatorname{ad} x \operatorname{ad} y-\operatorname{ad} y \operatorname{ad} x$.

From now on, we assume that \mathfrak{g} is a finite-dimensional Lie algebra over the field \mathbb{C} of complex numbers.

Theorem (Lie's theorem)

Let \mathfrak{g} be a solvable Lie algebra and V a finite-dimensional irreducible \mathfrak{g}-module. Then $\operatorname{dim} V=1$.

Corollary

Let \mathfrak{g} be a solvable Lie algebra and V a finite-dimensional \mathfrak{g}-module. Then a basis can be chosen for V with respect to which we obtain a matrix representation ρ of \mathfrak{g} of the form

Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be a linear transformation with eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$.

The generalized eigenspace of V with respect to λ_{i} is the set of all $v \in V$ annihilated by some power of $T-\lambda_{i} 1$.

We have

- $V=V_{1} \oplus \cdots \oplus V_{r}$.
- Each V_{i} is invariant under the action of T.

Theorem

Let \mathfrak{g} be a nilpotent Lie algebra and V a finite-dimensional \mathfrak{g}-module. Then for any $y \in \mathfrak{g}$, the generalized eigenspaces of V associated with $\rho(y)$ are all submodules of V.

Corollary

Let \mathfrak{g} be a nilpotent Lie algebra and V a finite-dimensional indecomposable \mathfrak{g}-module. Then a basis can be chosen for V with respect to which we obtain a representation ρ of \mathfrak{g} of the form

Notice that $\lambda: x \mapsto \lambda(x)$ is a 1-dimensional representation of \mathfrak{g}.

Let \mathfrak{g} be a Lie algebra and V a finite-dimensional \mathfrak{g}-module. For any 1-dimensional representation λ of \mathfrak{g}, we define the set

$$
V_{\lambda}=\left\{v \in V \mid(\forall x \in \mathfrak{g})(\exists N(x) \geq 1) \quad(\rho(x)-\lambda(x) 1)^{N(x)} v=0\right\} .
$$

Theorem
$V=\bigoplus_{\lambda} V_{\lambda}$, and each V_{λ} is a submodule of V.
Definition
If $V_{\lambda} \neq 0$, then we call λ a weight of \mathfrak{g} and V_{λ} the weight space of λ.
We call $V=\bigoplus_{\lambda} V_{\lambda}$ the weight space decomposition of V.

Since each V_{λ} is the direct sum of the indecomposable components giving rise to λ, it follows that a basis can be chosen for V_{λ} with respect to which a representation ρ of \mathfrak{g} on V_{λ} has the form

$$
\rho(x)=\left(\begin{array}{ccccc}
\lambda(x) & & & & * \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
0 & & & & \lambda(x)
\end{array}\right) \quad \text { for all } x \in \mathfrak{g}
$$

Theorem (Engel's theorem)

A Lie algebra \mathfrak{g} is nilpotent if and only if ad $x: \mathfrak{g} \rightarrow \mathfrak{g}$ is nilpotent for all $x \in \mathfrak{g}$.

Corollary

A Lie algebra \mathfrak{g} is nilpotent if and only if \mathfrak{g} has a basis with respect to which the adjoint representation of \mathfrak{g} has the form

$$
\rho(x)=\left(\begin{array}{ccccc}
0 & & & & * \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
0 & & & & 0
\end{array}\right) \quad \text { for all } x \in \mathfrak{g}
$$

Notice that if \mathfrak{h} is a subalgebra of a Lie algebra \mathfrak{g}, then \mathfrak{h} induces an \mathfrak{h}-module structure on \mathfrak{g} via the adjoint action.

If \mathfrak{g} is semisimple and \mathfrak{h} is chosen carefully, then \mathfrak{h} induces weight space decomposition of \mathfrak{g} that tells us a lot about a Lie algebra's structure.

Definition

Let \mathfrak{h} be a subalgebra of a Lie algebra \mathfrak{g}. We define the normalizer of \mathfrak{h} to be the set

$$
N(\mathfrak{h})=\{x \in \mathfrak{g} \mid[h, x] \in \mathfrak{h} \quad \text { for all } h \in \mathfrak{h}\} .
$$

Proposition

$N(\mathfrak{h})$ is a subalgebra of $\mathfrak{g}, \mathfrak{h}$ is an ideal of $N(\mathfrak{h})$, and $N(\mathfrak{h})$ is the largest subalgebra of \mathfrak{g} containing \mathfrak{h} as an ideal.

Proof.

- If $x, y \in N(\mathfrak{h}), h \in \mathfrak{h}$, then

$$
[h,[x, y]]=[[y, h], x]+[[h, x], y] \in \mathfrak{h}
$$

by the Jacobi identity, and so $N(\mathfrak{h})$ is a subalgebra of \mathfrak{g}.

- \mathfrak{h} is clearly an ideal of $N(\mathfrak{h})$.
- If \mathfrak{h} is an ideal of \mathfrak{m}, then $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{h}$ so that $\mathfrak{m} \subset N(\mathfrak{h})$.

Definition

A subalgebra \mathfrak{h} of \mathfrak{g} is a Cartan subalgebra of \mathfrak{g} if \mathfrak{h} is nilpotent and $N(\mathfrak{h})=\mathfrak{h}$.

Definition

Let $x \in \mathfrak{g}$. The null component $\mathfrak{g}_{0, x}$ of \mathfrak{g} with respect to x is the generalized eigenspace of ad $x: \mathfrak{g} \rightarrow \mathfrak{g}$, that is,

$$
\mathfrak{g}_{0, x}=\left\{y \in \mathfrak{g} \mid(\operatorname{ad} x)^{n} y=0 \quad \text { for some } n \geq 1\right\} .
$$

Definition
An element $x \in \mathfrak{g}$ is regular if $\operatorname{dim} \mathfrak{g}_{0, x}$ is as small as possible.

Any Lie algebra will certainly contain regular elements.

Theorem

If x is a regular element of \mathfrak{g}, then $\mathfrak{g}_{0, x}$ is a Cartan subalgebra of \mathfrak{g}.

Definition

A derivation of a Lie algebra \mathfrak{g} is a linear map $D: \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying

$$
D[x, y]=[D x, y]+[x, D y] \quad \text { for all } x, y \in \mathfrak{g} .
$$

Proposition

$\operatorname{ad} x$ is a derivation for all $x \in \mathfrak{g}$.
Proof.
$\operatorname{ad} x \cdot[y, z]=[x,[y, z]]=[[x, y], z]+[y,[x, z]]=[\operatorname{ad} x \cdot y, z]+[y, \operatorname{ad} x \cdot z]$.

The automorphisms of \mathfrak{g} form a group Aut (\mathfrak{g}) under composition of maps.

Proposition

If D is a nilpotent derivation of \mathfrak{g}, then $\exp (D)$ is an automorphism of \mathfrak{g}.

Definition

An inner automorphism of \mathfrak{g} is an automorphism of the form $\exp (\operatorname{ad} x)$ for $x \in \mathfrak{g}$ with ad x nilpotent. The inner automorphism group is the subgroup $\operatorname{Inn}(\mathfrak{g})$ of $\operatorname{Aut}(\mathfrak{g})$ generated by all inner automorphisms.

Proposition

$\operatorname{Inn}(\mathfrak{g})$ is a normal subgroup of $\operatorname{Aut}(\mathfrak{g})$.

Definition

Two subalgebras $\mathfrak{h}, \mathfrak{k}$ are conjugate in \mathfrak{g} if there exists a $\phi \in \operatorname{Inn}(\mathfrak{g})$ such that $\phi(\mathfrak{h})=\mathfrak{k}$.

Theorem

Any two Cartan subalgebras of \mathfrak{g} are conjugate.

Let \mathfrak{g} be a Lie algebra and \mathfrak{h} a Cartan subalgebra of \mathfrak{g}. Since \mathfrak{h} is nilpotent, the adjoint action of \mathfrak{h} on \mathfrak{g} induces a weight space decomposition $\mathfrak{g}=\bigoplus_{\lambda} \mathfrak{g}_{\lambda}$ where

$$
\mathfrak{g}_{\lambda}=\left\{x \in \mathfrak{g} \mid(\forall h \in \mathfrak{h})(\exists n \geq 1) \quad(\operatorname{ad} h-\lambda(h) 1)^{n} x=0\right\} .
$$

Proposition

$\mathfrak{h}=\mathfrak{g}_{0}$.

Proof.

Since \mathfrak{h} is nilpotent, we can choose a basis of \mathfrak{g} with respect to which $\operatorname{ad} x$ is represented by a strict upper-triangular matrix for all $x \in \mathfrak{h}$. This follows from the corollary to Engel's theorem.

Each such matrix has eigenvalue zero, and so $\mathfrak{h} \subset \mathfrak{g}_{0}$.
Now suppose $\mathfrak{h} \neq \mathfrak{g}_{0}$ and let $\mathfrak{m} / \mathfrak{h}$ be an irreducible \mathfrak{h}-submodule of $\mathfrak{g}_{0} / \mathfrak{h}$.
By Lie's theorem, we have $\operatorname{dim} \mathfrak{m} / \mathfrak{h}=1$. The 1-dimensional representation induced by $\mathfrak{m} / \mathfrak{h}$ must be the zero map since \mathfrak{h} is nilpotent.

Hence $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{h}$, and so $\mathfrak{m} \subset N(\mathfrak{h})$. This contradicts the fact that $\mathfrak{h}=N(\mathfrak{h})$.

Thus we obtain a decomposition of \mathfrak{g} of the form

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}_{\lambda_{1}} \oplus \cdots \oplus \mathfrak{g}_{\lambda_{r}} \quad \lambda_{1}, \ldots, \lambda_{r} \neq 0 .
$$

Definition

A 1-dimensional representation λ of \mathfrak{h} is called a root of \mathfrak{g} with respect to \mathfrak{h} if $\lambda \neq 0$ and $\mathfrak{g}_{\lambda} \neq 0$. We denote the set of roots of \mathfrak{g} with respect to \mathfrak{h} by Φ. Thus

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

We call this decomposition the Cartan decomposition of \mathfrak{g} with respect to \mathfrak{h}. Each \mathfrak{g}_{α} is called the root space of α.

Proposition

If λ and μ are 1-dimensional representations of \mathfrak{h}, then $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] \subset \mathfrak{g}_{\lambda+\mu}$.

Proof.

Let $y \in \mathfrak{g}_{\lambda}$ and $z \in \mathfrak{g}_{\mu}$. If $x \in \mathfrak{h}$, then
$(\operatorname{ad} x-\lambda(x) 1-\mu(x) 1)^{n}[y, z]=\sum_{i=0}^{n}\binom{n}{i}\left[(\operatorname{ad} x-\lambda(x) 1)^{i} y,(\operatorname{ad} x-\mu(x) 1)^{n-i} z\right]$.
Hence $(\operatorname{ad} x-\lambda(x) 1-\mu(x) 1)^{n}[y, z]=0$ if n is sufficiently large.
Corollary
If $\alpha, \beta \in \Phi$ are roots of \mathfrak{g} with respect to \mathfrak{h}, then

$$
\begin{array}{ll}
{\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}} & \text { if } \alpha+\beta \in \Phi \\
{\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{h}} & \text { if } \beta=-\alpha \\
{\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=0} & \text { if } \alpha+\beta \neq 0 \text { and } \alpha+\beta \notin \Phi .
\end{array}
$$

Proposition

Let $\alpha \in \Phi$. Given any $\beta \in \Phi$, there exists a number $r \in \mathbb{Q}$, depending on α and β, such that $\beta=r \alpha$ on the subspace $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ of \mathfrak{h}.

Proof.

If $-\alpha$ is not a weight of \mathfrak{g} with respect to \mathfrak{h}, then $\mathfrak{g}_{-\alpha}=0$, and the proof is trivial.

So assume $-\alpha$ is a weight. Then since $\alpha \neq 0$, we must have $-\alpha \in \Phi$. For $i \in \mathbb{Z}$, we consider the function $i \alpha+\beta: \mathfrak{h} \rightarrow \mathbb{C}$. Since Φ is finite, there exist integers p and q with $p \geq 0$ and $q \geq 0$ such that

$$
-p \alpha+\beta, \ldots, \beta, \ldots, q \alpha+\beta
$$

are all in Φ but $-(p+1) \alpha+\beta$ and $(q+1) \alpha+\beta$ are not in Φ.

If either $-(p+1) \alpha+\beta=0$ or $(q+1) \alpha+\beta=0$, then the result is obvious.

So assume $-(p+1) \alpha+\beta \neq 0$ and $(q+1) \alpha+\beta \neq 0$. Let \mathfrak{m} be the subspace of \mathfrak{g} given by

$$
\mathfrak{m}=\mathfrak{g}_{-p \alpha+\beta} \oplus \cdots \oplus \mathfrak{g}_{q \alpha+\beta} .
$$

Let $x=[y, z]$ with $y \in \mathfrak{g}_{\alpha}$ and $z \in \mathfrak{g}_{-\alpha}$. We have ad $y \cdot \mathfrak{g}_{q \alpha+\beta} \subset \mathfrak{g}_{(q+1) \alpha+\beta}$. Because $(q+1) \alpha+\beta \neq 0$ and $(q+1) \alpha+\beta \notin \Phi$, we must have $\mathfrak{g}_{(q+1) \alpha+\beta}=0$.

Thus ad $y \cdot \mathfrak{m} \subset \mathfrak{m}$. By a similar argument, we have ad $z \cdot \mathfrak{m} \subset \mathfrak{m}$, and so

$$
\operatorname{ad} x \cdot \mathfrak{m}=(\operatorname{ad} y \operatorname{ad} z-\operatorname{ad} z \operatorname{ad} y) \mathfrak{m} \subset \mathfrak{m} .
$$

We calculate the trace $\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} x)$. Since $x \in \mathfrak{h}$, each weight space $\mathfrak{g}_{i \alpha+\beta}$ is invariant under ad x. Thus

$$
\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} x)=\sum_{i=-p}^{q} \operatorname{tr}_{\mathfrak{g}_{i \alpha+\beta}}(\operatorname{ad} x)
$$

Now ad x acts on $\mathfrak{g}_{i \alpha+\beta}$ via a matrix of the form

$$
\left(\begin{array}{cccc}
(i \alpha+\beta)(x) & & & * \\
& \cdot & & \\
& \cdot & \\
& & \cdot & \\
0 & & & (i \alpha+\beta)(x)
\end{array}\right) \text {. }
$$

Thus $\operatorname{tr}_{\mathfrak{g}_{i \alpha \beta}}(\operatorname{ad} x)=\operatorname{dim} \mathfrak{g}_{i \alpha+\beta}(i \alpha+\beta)(x)$.

It follows that

$$
\begin{aligned}
\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} x) & =\sum_{i=-p}^{q} \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}(i \alpha+\beta)(x) \\
& =\left(\sum_{i=-p}^{q} i \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}\right) \alpha(x)+\left(\sum_{i=-p}^{q} \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}\right) \beta(x) .
\end{aligned}
$$

But we also have

$$
\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} x)=\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} y \operatorname{ad} z-\operatorname{ad} z \operatorname{ad} y)=\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} y \operatorname{ad} z)-\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} z \operatorname{ad} y)=0
$$

Hence

$$
\left(\sum_{i=-p}^{q} i \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}\right) \alpha(x)+\left(\sum_{i=-p}^{q} \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}\right) \beta(x)=0 .
$$

We know that $\operatorname{dim} \mathfrak{g}_{i \alpha+\beta}>0$ for all $-p \leq i \leq q$. Thus

$$
\beta(x)=\frac{\left(\sum_{i=-p}^{q} i \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}\right)}{\left(\sum_{i=-p}^{q} \operatorname{dim} \mathfrak{g}_{i \alpha+\beta}\right)} \alpha(x) .
$$

Definition

We define the Killing form of \mathfrak{g} to be the bilinear form $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ given by $\langle x, y\rangle=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y)$.

Proposition

(i) The Killing form is symmetric, i.e., $\langle x, y\rangle=\langle y, x\rangle$ for all $x, y \in \mathfrak{g}$.
(ii) The Killing form is invariant, i.e., $\langle[x, y], z\rangle=\langle x,[y, z]\rangle$ for all $x, y, z \in \mathfrak{g}$.

Proposition

Let \mathfrak{a} be an ideal of \mathfrak{g} and let $x, y \in \mathfrak{a}$. Then $\langle x, y\rangle_{\mathfrak{a}}=\langle x, y\rangle_{\mathfrak{g}}$. Hence the killing form of \mathfrak{g} restricted to \mathfrak{a} is the Killing form of \mathfrak{a}.

Proof.

We choose a basis of \mathfrak{a} and extend it to a basis of \mathfrak{g}. With respect to this basis, ad $x: \mathfrak{g} \rightarrow \mathfrak{g}$ is represented by a matrix of the form

$$
\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & 0
\end{array}\right)
$$

since $x \in \mathfrak{a}$.
Similarly, ad $y: \mathfrak{g} \rightarrow \mathfrak{g}$ is represented by a matrix of the form

$$
\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & 0
\end{array}\right)
$$

Thus ad x ad $y: \mathfrak{g} \rightarrow \mathfrak{g}$ is represented by the matrix

$$
\left(\begin{array}{cc}
A_{1} B_{1} & A_{1} B_{2} \\
0 & 0
\end{array}\right)
$$

Hence $\operatorname{tr}_{\mathfrak{a}}(\operatorname{ad} x \operatorname{ad} y)=\operatorname{tr}\left(A_{1} B_{1}\right)=\operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} x$ ad $y)$, and so
$\langle x, y\rangle_{\mathfrak{a}}=\langle x, y\rangle_{\mathfrak{g}}$.

Proposition

If \mathfrak{a} is an ideal of \mathfrak{g}, then \mathfrak{a}^{\perp} is an ideal of \mathfrak{g}.
Proof.
If $[x, y] \in\left[\mathfrak{a}^{\perp}, \mathfrak{g}\right]$ with $x \in \mathfrak{a}^{\perp}$ and $y \in \mathfrak{g}$, then for all $z \in \mathfrak{a}$, we have

$$
\langle[x, y], z\rangle=\langle x,[y, z]\rangle=0 .
$$

In particular, \mathfrak{g}^{\perp} is an ideal of \mathfrak{g}.

Definition

The Killing form of \mathfrak{g} is nondegenerate if $\mathfrak{g}^{\perp}=0$. The Killing form of \mathfrak{g} is identically zero if $\mathfrak{g}^{\perp}=\mathfrak{g}$.

Proposition

Let \mathfrak{g} be a Lie algebra such that $\mathfrak{g} \neq 0$ and $\mathfrak{g}^{2}=\mathfrak{g}$. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. Then there exists an $x \in \mathfrak{h}$ such that $\langle x, x\rangle \neq 0$.

Proof.

Let $\mathfrak{g}=\oplus \mathfrak{g}_{\lambda}$ be the Cartan decomposition of \mathfrak{g}. Then

$$
\mathfrak{g}^{2}=[\mathfrak{g}, \mathfrak{g}]=\left[\bigoplus_{\lambda} \mathfrak{g}_{\lambda}, \bigoplus_{\lambda} \mathfrak{g}_{\lambda}\right]=\sum_{\lambda, \mu}\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] .
$$

We have $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right] \subset \mathfrak{g}_{\lambda+\mu}$. Thus $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{-\lambda}\right] \subset \mathfrak{h}$, while $\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}\right]$ is contained in the complement of \mathfrak{h} in \mathfrak{g} if $\mu \neq-\lambda$.

Since $\mathfrak{g}=\mathfrak{g}^{2}$, we must have

$$
\mathfrak{h}=\sum_{\lambda}\left[\mathfrak{g}_{\lambda}, \mathfrak{g}_{-\lambda}\right]
$$

summed over all weights λ such that $-\lambda$ is also a weight.
Thus

$$
\mathfrak{h}=[\mathfrak{h}, \mathfrak{h}]+\sum_{\alpha}\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]
$$

summed over all roots α such that $-\alpha$ is also a root.
Note that \mathfrak{g} is not nilpotent since $\mathfrak{g}^{2}=\mathfrak{g} \neq 0$. But we know that \mathfrak{h} is nilpotent, and so $\mathfrak{h} \neq \mathfrak{g}$. Thus there exists at least one root $\beta \in \Phi$.

Now β is a 1-dimensional representation of \mathfrak{h}, and so β vanishes on $[\mathfrak{h}, \mathfrak{h}]$. But β does not vanish on \mathfrak{h} since $\beta \neq 0$.

Using the above decomposition of \mathfrak{h}, we see there exists some root $\alpha \in \Phi$ such that $-\alpha \in \Phi$ and β does not vanish on $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right.$]. Choose an $x \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ such that $\beta(x) \neq 0$. Then

$$
\langle x, x\rangle=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} x)=\sum_{\lambda} \operatorname{dim} \mathfrak{g}_{\lambda}(\lambda(x))^{2}
$$

since ad x is represented on \mathfrak{g}_{λ} by a matrix of the form

$$
\left(\begin{array}{c}
\lambda(x) \\
\\
0
\end{array}\right.
$$

$$
\left.\begin{array}{c}
* \\
\\
\\
\lambda(x)
\end{array}\right)
$$

For each λ, there exists an $r_{\lambda, \alpha} \in \mathbb{Q}$ such that $\lambda(x)=r_{\lambda, \alpha} \alpha(x)$.

Thus

$$
\langle x, x\rangle=\left(\sum_{\lambda} \operatorname{dim} \mathfrak{g}_{\lambda} r_{\lambda, \alpha}^{2}\right) \alpha(x)^{2}
$$

Now $\beta(x)=r_{\beta, \alpha} \alpha(x)$ and $\beta(x) \neq 0$. Thus $r_{\beta, \alpha} \neq 0$ and $\alpha(x) \neq 0$. It follows that $\langle x, x\rangle \neq 0$.

Theorem
If the Killing form of \mathfrak{g} is identically zero, then \mathfrak{g} is solvable.
Proof.
We proceed by induction on $\operatorname{dim} \mathfrak{g}$. If $\operatorname{dim} \mathfrak{g}=1$, then \mathfrak{g} is clearly
solvable. So assume $\operatorname{dim} \mathfrak{g}>1$.
By the contrapositive of the last proposition, we see that $\mathfrak{g} \neq \mathfrak{g}^{2}$. Now \mathfrak{g}^{2} is an ideal of \mathfrak{g}, so the Killing form of \mathfrak{g}^{2} is the restriction of the Killing form of \mathfrak{g}.

Hence the Killing form of \mathfrak{g}^{2} is identically zero. It follows by induction that \mathfrak{g}^{2} is solvable. We also have $\left(\mathfrak{g} / \mathfrak{g}^{2}\right)^{2}=0$, and so $\mathfrak{g} / \mathfrak{g}^{2}$ is solvable. Thus \mathfrak{g} is solvable.

Theorem (Cartan's criterion)
A Lie algebra \mathfrak{g} is semisimple if and only if the Killing form of \mathfrak{g} is nondegenerate.

Proof.
We prove the contrapositive. If the Killing form of \mathfrak{g} is degenerate, then
$\mathfrak{g}^{\perp} \neq 0$.
We know that \mathfrak{g}^{\perp} is an ideal, and thus the Killing form of \mathfrak{g}^{\perp} is identically zero. This implies \mathfrak{g}^{\perp} is solvable by the last theorem.

Thus \mathfrak{g} has a nonzero solvable ideal, and so \mathfrak{g} is not semisimple.
Now suppose \mathfrak{g} is not semisimple. Then the solvable radical \mathfrak{r} of \mathfrak{g} is nonzero. Consider the chain of subspaces

$$
\mathfrak{r}=\mathfrak{r}^{(0)} \supset \mathfrak{r}^{(1)} \supset \mathfrak{r}^{(2)} \supset \cdots \supset \mathfrak{r}^{(k-1)} \supset \mathfrak{r}^{(k)}=0 .
$$

Each subspace $\mathfrak{r}^{(i)}$ is an ideal of \mathfrak{g} since the product of two ideals is an ideal.

Let $\mathfrak{a}=\mathfrak{r}^{(k-1)}$. Then \mathfrak{a} is a nonzero ideal such that $\mathfrak{a}^{2}=0$. We choose a basis of \mathfrak{a} and extend it to a basis of \mathfrak{g}.

Let $x \in \mathfrak{a}, y \in \mathfrak{g}$. With respect to our chosen basis, ad x is represented by a matrix of the form

$$
\left(\begin{array}{ll}
0 & A \\
0 & 0
\end{array}\right)
$$

since $\mathfrak{a}^{2}=0$ and \mathfrak{a} is an ideal of \mathfrak{g}, and ad y is represented by a matrix of the form

$$
\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right)
$$

Thus ad x ad y is represented by the matrix

$$
\left(\begin{array}{cc}
0 & A B_{3} \\
0 & 0
\end{array}\right) .
$$

Hence $\langle x, y\rangle=\operatorname{tr}(\operatorname{ad} x$ ad $y)=0$. This holds for all $x \in \mathfrak{a}, y \in \mathfrak{g}$, and so $\mathfrak{a} \subset \mathfrak{g}^{\perp}$. Thus $\mathfrak{g}^{\perp} \neq 0$, and so the Killing form of \mathfrak{g} is degenerate.

From now on, we assume that \mathfrak{g} is a semisimple Lie algebra.

Proposition

If $\mu \neq-\lambda$, then \mathfrak{g}_{λ} and \mathfrak{g}_{μ} are orthogonal with respect to the Killing form.

Proof.

Let $x \in \mathfrak{g}_{\lambda}, y \in \mathfrak{g}_{\mu}$. For every weight space \mathfrak{g}_{ν}, we have

$$
\operatorname{ad} x \text { ad } y \cdot \mathfrak{g}_{\nu} \subset \mathfrak{g}_{\lambda+\mu+\nu} .
$$

We choose a basis of \mathfrak{g} adapted to the Cartan decomposition. With respect to such a basis, ad x ad y is represented by a block matrix of the form

since $\lambda+\mu+\nu \neq \nu$.
It follows that $\langle x, y\rangle=\operatorname{tr}(\operatorname{ad} x$ ad $y)=0$, and so \mathfrak{g}_{λ} is orthogonal to \mathfrak{g}_{μ}.

Proposition

If α is a root of \mathfrak{g} with respect to \mathfrak{h}, then $-\alpha$ is also a root.

Proof.

Recall that α is a root if $\alpha \neq 0$ and $\mathfrak{g}_{\alpha} \neq 0$. Suppose $-\alpha$ is not a root.
Then since $-\alpha \neq 0$, we must have $\mathfrak{g}_{-\alpha}=0$. This implies that \mathfrak{g}_{α} is orthogonal to all \mathfrak{g}_{λ}, and thus $\mathfrak{g}_{\alpha} \subset \mathfrak{g}^{\perp}$.

But \mathfrak{g} is semisimple, and so $\mathfrak{g}^{\perp}=0$ by Cartan's criterion. Thus $\mathfrak{g}_{\alpha}=0$, contradicting the fact that α is a root.

Proposition

The Killing form of \mathfrak{g} remains nondegenerate on restriction to \mathfrak{h}.

Proof.

Let $x \in \mathfrak{h}$ and suppose $\langle x, y\rangle=0$ for all $y \in \mathfrak{h}$. We also have $\langle x, y\rangle=0$ for all $y \in \mathfrak{g}_{\alpha}$ where $\alpha \in \Phi$.

Thus $\langle x, y\rangle=0$ for all $y \in \mathfrak{g}$, and so $x \in \mathfrak{g}^{\perp}$. But $\mathfrak{g}^{\perp}=0$ since \mathfrak{g} is semisimple, and so $x=0$.

Theorem
The Cartan subalgebras of a semisimple Lie algebra are abelian.

Proof.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. For all $x \in[\mathfrak{h}, \mathfrak{h}], y \in \mathfrak{h}$, we have

$$
\langle x, y\rangle=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y)=\sum_{\lambda} \operatorname{dim} \mathfrak{g}_{\lambda} \lambda(x) \lambda(y)
$$

since ad x ad y is represented on \mathfrak{g}_{λ} by a matrix of the form

$$
\left(\begin{array}{ccccc}
\lambda(x) \lambda(y) & & & & * \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & & \lambda(x) \lambda(y)
\end{array}\right)
$$

But λ is a 1 -dimensional representation of \mathfrak{h}, and so λ vanishes on $[\mathfrak{h}, \mathfrak{h}]$.
Thus $\lambda(x)=0$.

It follows that $\langle x, y\rangle=0$ for all $y \in \mathfrak{h}$.
Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies $x=0$. Hence $[\mathfrak{h}, \mathfrak{h}]=0$, and so \mathfrak{h} is abelian.

Let $\mathfrak{h}^{*}=\operatorname{Hom}(\mathfrak{h}, \mathbb{C})$ be the dual space of \mathfrak{h}. We have $\operatorname{dim} \mathfrak{h}^{*}=\operatorname{dim} \mathfrak{h}$.
We define a map $\mathfrak{h} \rightarrow \mathfrak{h}^{*}$ using the Killing form of \mathfrak{g}. Given $h \in \mathfrak{h}$, we define $h^{*} \in \mathfrak{h}^{*}$ by

$$
h^{*}(x)=\langle h, x\rangle \quad \text { for all } x \in \mathfrak{h} .
$$

Lemma

The map $h \mapsto h^{*}$ is an isomorphism of vector spaces between \mathfrak{h} and \mathfrak{h}^{*}.

Notice that Φ is a finite subset of \mathfrak{h}^{*}.
Because the map $h \mapsto h^{*}$ is bijective, we know that for each $\alpha \in \Phi$, there exists a unique element $h_{\alpha}^{\prime} \in \mathfrak{h}$ such that $h_{\alpha}^{\prime *}(x)=\alpha(x)$ for all $x \in \mathfrak{h}$, that is,

$$
\alpha(x)=\left\langle h_{\alpha}^{\prime}, x\right\rangle \quad \text { for all } x \in \mathfrak{h} .
$$

Proposition

The vectors h_{α}^{\prime} for $\alpha \in \Phi$ span \mathfrak{h}.

Proof.

Suppose the vectors h_{α}^{\prime} are contained in a proper subspace of \mathfrak{h}. Then the annihilator of this subspace is nonzero.

Thus there exists a nonzero $x \in \mathfrak{h}$ such that $x^{*}\left(h_{\alpha}^{\prime}\right)=0$ for all $\alpha \in \Phi$, that is, $\left\langle h_{\alpha}^{\prime}, x\right\rangle=0$. Hence $\alpha(x)=0$ for all $\alpha \in \Phi$.

Let $y \in \mathfrak{h}$. Then

$$
\langle x, y\rangle=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y)=\sum_{\lambda} \operatorname{dim} \mathfrak{g}_{\lambda} \lambda(x) \lambda(y)=0
$$

since $\lambda(x)=0$ for all weights λ.
Thus $\langle x, y\rangle=0$ for all $y \in \mathfrak{h}$. Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies $x=0$, a contradiction.

Proposition

$h_{\alpha}^{\prime} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ for all $\alpha \in \Phi$.

Proof.

We know that \mathfrak{g}_{α} is an \mathfrak{h}-module. Since all irreducible \mathfrak{h}-modules are 1-dimensional, \mathfrak{g}_{α} contains a 1-dimensional \mathfrak{h}-submodule $\mathbb{C} e_{\alpha}$.

We have $\left[x, e_{\alpha}\right]=\alpha(x) e_{\alpha}$ for all $x \in \mathfrak{h}$.

Let $y \in \mathfrak{g}_{-\alpha}$. Then $\left[e_{\alpha}, y\right] \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right] \subset \mathfrak{h}$. I claim that $\left[e_{\alpha}, y\right]=\left\langle e_{\alpha}, y\right\rangle h_{\alpha}^{\prime}$.

We define the element

$$
z=\left[e_{\alpha}, y\right]-\left\langle e_{\alpha}, y\right\rangle h_{\alpha}^{\prime} \in \mathfrak{h} .
$$

Let $x \in \mathfrak{h}$. Then

$$
\begin{aligned}
\langle x, z\rangle & =\left\langle x,\left[e_{\alpha}, y\right]\right\rangle-\left\langle e_{\alpha}, y\right\rangle\left\langle x, h_{\alpha}^{\prime}\right\rangle \\
& =\left\langle\left[x, e_{\alpha}\right], y\right\rangle-\left\langle e_{\alpha}, y\right\rangle \alpha(x) \\
& =\alpha(x)\left\langle e_{\alpha}, y\right\rangle-\left\langle e_{\alpha}, y\right\rangle \alpha(x)=0 .
\end{aligned}
$$

Thus $\langle x, z\rangle=0$ for all $x \in \mathfrak{h}$. Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies $z=0$. Hence $\left[e_{\alpha}, y\right]=\left\langle e_{\alpha}, y\right\rangle h_{\alpha}^{\prime}$ for all $y \in \mathfrak{g}_{-\alpha}$.

Now there exists a $y \in \mathfrak{g}_{-\alpha}$ such that $\left\langle e_{\alpha}, y\right\rangle \neq 0$. For otherwise e_{α} would be orthogonal to $\mathfrak{g}_{-\alpha}$, and thus to the whole of \mathfrak{g}.

This would imply $e_{\alpha} \in \mathfrak{g}^{\perp}$. But $\mathfrak{g}^{\perp}=0$ since \mathfrak{g} is semisimple, and so $e_{\alpha}=0$, a contradiction.

Choosing a $y \in \mathfrak{g}_{-\alpha}$ such that $\left\langle e_{\alpha}, y\right\rangle \neq 0$, we have

$$
h_{\alpha}^{\prime}=\frac{1}{\left\langle e_{\alpha}, y\right\rangle}\left[e_{\alpha}, y\right] \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right] .
$$

Proposition
$\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle \neq 0$ for all $\alpha \in \Phi$.

Proof.

Suppose $\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle=0$ for some $\alpha \in \Phi$. Let β be any element of Φ.
There exists an $r_{\beta, \alpha} \in \mathbb{Q}$ such that $\beta=r_{\beta, \alpha} \alpha$ on $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$.
Now $h_{\alpha}^{\prime} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$. Thus

$$
\beta\left(h_{\alpha}^{\prime}\right)=r_{\beta, \alpha} \alpha\left(h_{\alpha}^{\prime}\right)
$$

that is, $\left\langle h_{\beta}^{\prime}, h_{\alpha}^{\prime}\right\rangle=r_{\beta, \alpha}\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle=0$.
This holds for all $\beta \in \Phi$. But the vectors h_{α}^{\prime} for $\alpha \in \Phi$ span \mathfrak{h}, and so $\left\langle x, h_{\alpha}^{\prime}\right\rangle=0$ for all $x \in \mathfrak{h}$.

Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies $h_{\alpha}^{\prime}=0$. Thus $\alpha=0$, contradicting the fact that $\alpha \in \Phi$.

Theorem

$\operatorname{dim} \mathfrak{g}_{\alpha}=1$ for all $\alpha \in \Phi$.

Proof.

Choose a 1-dimensional \mathfrak{h}-submodule $\mathbb{C} e_{\alpha}$ of \mathfrak{g}_{α}. We can find an $e_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $\left[e_{\alpha}, e_{-\alpha}\right]=h_{\alpha}^{\prime}$.

Consider the subspace \mathfrak{m} of \mathfrak{g} given by

$$
\mathfrak{m}=\mathbb{C} e_{\alpha} \oplus \mathbb{C} h_{\alpha}^{\prime} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{-2 \alpha} \oplus \cdots
$$

There are only finitely-many summands of \mathfrak{m} since Φ is finite. Thus there are only finitely-many non-negative integers r such that $\mathfrak{g}_{-r \alpha}=0$.

Observe that ad $e_{\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$ because

$$
\begin{aligned}
& {\left[e_{\alpha}, e_{\alpha}\right]=0,} \\
& {\left[e_{\alpha}, h_{\alpha}^{\prime}\right]=-\alpha\left(h_{\alpha}^{\prime}\right) e_{\alpha},} \\
& {\left[e_{\alpha}, y\right]=\left\langle e_{\alpha}, y\right\rangle h_{\alpha}^{\prime} \quad \text { for all } y \in \mathfrak{g}_{-\alpha} .}
\end{aligned}
$$

and

$$
\text { ad } e_{\alpha} \cdot \mathfrak{g}_{-r \alpha} \subset \mathfrak{g}_{-(r-1) \alpha} \quad \text { for all } r \geq 2
$$

Similarly, ad $e_{-\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$ because

$$
\begin{aligned}
{\left[e_{-\alpha}, e_{\alpha}\right] } & =h_{\alpha}^{\prime} \\
{\left[e_{-\alpha}, h_{\alpha}^{\prime}\right] } & =\alpha\left(h_{\alpha}^{\prime}\right) e_{-\alpha}
\end{aligned}
$$

and ad $e_{\alpha} \cdot \mathfrak{g}_{-r \alpha} \subset \mathfrak{g}_{-(r+1) \alpha}$ for all $r \geq 1$.

Now $h_{\alpha}^{\prime}=\left[e_{\alpha}, e_{-\alpha}\right]$, and so

$$
\operatorname{ad} h_{\alpha}^{\prime}=\operatorname{ad} e_{\alpha} \text { ad } e_{-\alpha}-\operatorname{ad} e_{-\alpha} \text { ad } e_{\alpha}
$$

Thus ad $h_{\alpha}^{\prime} \cdot \mathfrak{m} \subset \mathfrak{m}$.
We calculate the trace of ad h_{α}^{\prime} on \mathfrak{m} in two different ways. First, we have

$$
\begin{aligned}
\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} h_{\alpha}^{\prime}\right) & =\alpha\left(h_{\alpha}^{\prime}\right)+\operatorname{dim} \mathfrak{g}_{-\alpha}\left(-\alpha\left(h_{\alpha}^{\prime}\right)\right)+\operatorname{dim} \mathfrak{g}_{-2 \alpha}\left(-2 \alpha\left(h_{\alpha}^{\prime}\right)\right)+\cdots \\
& =\alpha\left(h_{\alpha}^{\prime}\right)\left(1-\operatorname{dim} \mathfrak{g}_{-\alpha}-2 \operatorname{dim} \mathfrak{g}_{-2 \alpha}-\cdots\right) .
\end{aligned}
$$

Second, we have

$$
\operatorname{tr}_{\mathfrak{m}}\left(h_{\alpha}^{\prime}\right)=\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} e_{\alpha} \operatorname{ad} e_{-\alpha}\right)-\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} e_{-\alpha} \operatorname{ad} e_{\alpha}\right)=0
$$

Thus

$$
\alpha\left(h_{\alpha}^{\prime}\right)\left(1-\operatorname{dim} \mathfrak{g}_{-\alpha}-2 \operatorname{dim} \mathfrak{g}_{-2 \alpha}-\cdots\right)=0
$$

Now $\alpha\left(h_{\alpha}^{\prime}\right)=\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle \neq 0$, and so

$$
1-\operatorname{dim} \mathfrak{g}_{-\alpha}-2 \operatorname{dim} \mathfrak{g}_{-2 \alpha}-\cdots=0
$$

This can happen only if $\operatorname{dim} \mathfrak{g}_{-\alpha}=1$ and $\operatorname{dim} \mathfrak{g}_{-r \alpha}=0$ for all $r \geq 2$.
Now $\alpha \in \Phi$ if and only if $-\alpha \in \Phi$. Thus $\operatorname{dim} \mathfrak{g}_{\alpha}=1$ for all $\alpha \in \Phi$.

Note that while all of the root spaces \mathfrak{g}_{α} are 1-dimensional, the space $\mathfrak{g}_{0}=\mathfrak{h}$ need not be 1-dimensional.

Proposition

If $\alpha \in \Phi$ and $r \alpha \in \Phi$ where $r \in \mathbb{Z}$, then $r=1$ or $r=-1$.

Proof.

From the above, we have $\operatorname{dim} \mathfrak{g}_{-r \alpha}=0$ for all $r \geq 2$, that is, $-r \alpha$ is not a root.

Now $r \alpha \in \Phi$ if and only if $-r \alpha \in \Phi$. Thus only α and $-\alpha$ can be roots.

We are now ready to examine some stronger properties of the set Φ of roots.

Let $\alpha, \beta \in \Phi$ be roots such that $\beta \neq \alpha$ and $\beta \neq-\alpha$. Then β is not an integer multiple of α.

There do, however, exist integers $p \geq 0, q \geq 0$ such that the elements

$$
-p \alpha+\beta, \ldots,-\alpha+\beta, \beta, \alpha+\beta, \ldots, q \alpha+\beta
$$

all lie in Φ but $-(p+1) \alpha+\beta$ and $(q+1) \alpha+\beta$ do not.
The set of roots

$$
-p \alpha+\beta, \ldots, q \alpha+\beta
$$

is called the $\boldsymbol{\alpha}$-chain of roots through β.

Proposition

Let α, β be roots such that $\beta \neq \alpha$ and $\beta \neq-\alpha$. Let

$$
-p \alpha+\beta, \ldots, \beta, \ldots, q \alpha+\beta
$$

be the α-chain of roots through β. Then

$$
\frac{\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle}=p-q .
$$

Proof.

Consider the subspace \mathfrak{m} of \mathfrak{g} given by

$$
\mathfrak{m}=\mathfrak{g}_{-p \alpha+\beta} \oplus \cdots \oplus \mathfrak{g}_{q \alpha+\beta} .
$$

Recall that $h_{\alpha}^{\prime}=\left[e_{\alpha}, e_{-\alpha}\right] \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$.

Now β is not an integer multiple of α, and so $-(p+1) \alpha+\beta \neq 0$ and $(q+1) \alpha+\beta \neq 0$.

We have ad $e_{\alpha} \cdot \mathfrak{g}_{q \alpha+\beta} \subset \mathfrak{g}_{(q+1) \alpha+\beta}$. Because $(q+1) \alpha+\beta \neq 0$ and $(q+1) \alpha+\beta \notin \Phi$, we must have $\mathfrak{g}_{(q+1) \alpha+\beta}=0$.

Thus ad $e_{\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$. By a similar argument, we have ad $e_{-\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$, and so

$$
\text { ad } h_{\alpha}^{\prime} \cdot \mathfrak{m}=\left(\operatorname{ad} e_{\alpha} \text { ad } e_{-\alpha}-\operatorname{ad} e_{-\alpha} \text { ad } e_{\alpha}\right) \mathfrak{m} \subset \mathfrak{m} .
$$

We calculate the trace of ad h_{α}^{\prime} on \mathfrak{m} in two different ways. We have

$$
\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} h_{\alpha}^{\prime}\right)=\sum_{i=-p}^{q}(i \alpha+\beta)\left(h_{\alpha}^{\prime}\right)
$$

since $\operatorname{dim} \mathfrak{g}_{i \alpha+\beta}=1$.

Second, we have

$$
\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} h_{\alpha}^{\prime}\right)=\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} e_{\alpha} \operatorname{ad} e_{-\alpha}\right)-\operatorname{tr}_{\mathfrak{m}}\left(\operatorname{ad} e_{-\alpha} \operatorname{ad} e_{\alpha}\right)=0 .
$$

Thus

$$
\sum_{i=-p}^{q}(i \alpha+\beta)\left(h_{\alpha}^{\prime}\right)=0
$$

that is,

$$
\left(\frac{q(q+1)}{2}-\frac{p(p+1)}{2}\right) \alpha\left(h_{\alpha}^{\prime}\right)+(p+q+1) \beta\left(h_{\alpha}^{\prime}\right)=0 .
$$

Since $p+q+1 \neq 0$, this yields

$$
\frac{(q-p)}{2}\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle+\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle=0
$$

Hence

$$
\frac{\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle}=p-q
$$

since $\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle \neq 0$.

Corollary

If $\alpha \in \Phi$ and $\zeta \alpha \in \Phi$ where $\zeta \in \mathbb{C}$, then $\zeta=1$ or $\zeta=-1$.

Proof.

Suppose $\zeta \neq \pm 1$ and let $\beta=\zeta \alpha$. Then $\beta\left(h_{\alpha}^{\prime}\right)=\zeta \alpha\left(h_{\alpha}^{\prime}\right)$, that is,

$$
\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle=\zeta\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle
$$

From the previous proposition, this yields

$$
2 \zeta=2 \frac{\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle}=p-q .
$$

Hence $2 \zeta \in \mathbb{Z}$. If $\zeta \in \mathbb{Z}$, then $\zeta= \pm 1$. Thus $\zeta \notin \mathbb{Z}$. It follows that $p-q$ is odd.

The α-chain of roots through β is

$$
-\left(\frac{p+q}{2}\right) \alpha, \ldots, \beta=\left(\frac{p-q}{2}\right) \alpha, \ldots,\left(\frac{p+q}{2}\right) \alpha .
$$

Since $p-q$ is odd and consecutive roots differ by α, we see that all roots in the α-chain are odd multiples of $\frac{1}{2} \alpha$.

Also, $p-q \neq 0$, and so p and q cannot both be zero. Thus $p+q \neq 0$.
Because the first and last roots are negatives of one another, $\frac{1}{2} \alpha$ must lie in the α-chain. Thus $\frac{1}{2} \alpha \in \Phi$.

But $\alpha \in \Phi$, and so $2\left(\frac{1}{2} \alpha\right) \in \Phi$, a contradiction.

Proposition

$\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle \in \mathbb{Q}$ for all $\alpha, \beta \in \Phi$.

Proof.

We already know that $\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle \in \mathbb{C}$. We also have

$$
2 \frac{\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle} \in \mathbb{Z} .
$$

Thus $\frac{\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle} \in \mathbb{Q}$. It is therefore sufficient to show that $\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle \in \mathbb{Q}$.
We have

$$
\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle=\operatorname{tr}\left(\operatorname{ad} h_{\alpha}^{\prime} \text { ad } h_{\alpha}^{\prime}\right)=\sum_{\beta \in \Phi}\left(\beta\left(h_{\alpha}^{\prime}\right)\right)^{2}=\sum_{\beta \in \Phi}\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle^{2}
$$

Dividing by $\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle^{2}$, this yields

$$
\frac{1}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle}=\sum_{\beta \in \Phi}\left(\frac{\left\langle h_{\alpha}^{\prime}, h_{\beta}^{\prime}\right\rangle}{\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle}\right)^{2} \in \mathbb{Z} .
$$

Hence $\left\langle h_{\alpha}^{\prime}, h_{\alpha}^{\prime}\right\rangle \in \mathbb{Q}$, completing the proof.

