The Cartan Decomposition of a Complex Semisimple Lie Algebra

Shawn Baland

University of Colorado, Boulder

November 29, 2007

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let k be a field. A k-algebra is a k-vector space A equipped with a bilinear map $A \times A \rightarrow A$ called multiplication.

Definition

A Lie algebra is a *k*-algebra \mathfrak{g} with multiplication $(x, y) \mapsto [x, y]$ satisfying the following conditions:

(i) [x, x] = 0 for all $x \in \mathfrak{g}$.

(ii) [[x,y],z] + [[y,z],x] + [[z,x],y] = 0 for all $x, y, z \in \mathfrak{g}$.

Condition (ii) is called the Jacobi identity.

We define the **lower central series** of \mathfrak{g} recursively by

$$\mathfrak{g}^1 = \mathfrak{g}, \qquad \mathfrak{g}^{n+1} = [\mathfrak{g}^n, \mathfrak{g}] \quad \text{ for } n \geq 1.$$

Proposition

Each \mathfrak{g}^n is an ideal of \mathfrak{g} , and $\mathfrak{g} = \mathfrak{g}^1 \supset \mathfrak{g}^2 \supset \mathfrak{g}^3 \supset \cdots$.

Definition

- We say that \mathfrak{g} is **nilpotent** if $\mathfrak{g}^n = 0$ for some *n*.
- We say that g is **abelian** if $g^2 = 0$.

We define the derived series of \mathfrak{g} recursively by

$$\mathfrak{g}^{(0)} = \mathfrak{g}, \qquad \mathfrak{g}^{(n+1)} = \left[\mathfrak{g}^{(n)}, \mathfrak{g}^{(n)}\right] \quad ext{for } n \geq 0.$$

Proposition

Each
$$\mathfrak{g}^{(n)}$$
 is an ideal of \mathfrak{g} , and $\mathfrak{g} = \mathfrak{g}^{(0)} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots$.

Definition

A Lie algebra \mathfrak{g} is **solvable** if $\mathfrak{g}^{(n)} = 0$ for some *n*.

Proposition

Every nilpotent Lie algebra is solvable.

Proposition

Every finite-dimensional Lie algebra contains a unique maximal solvable ideal r. (This is called the **solvable radical**.)

Definition

A Lie algebra \mathfrak{g} is **semisimple** if $\mathfrak{r} = 0$.

Definition

A Lie algebra \mathfrak{g} is **simple** if it contains no ideals other than itself and the zero ideal.

The 1-dimensional Lie algebra is called the trivial simple Lie algebra.

Proposition

Every non-trivial simple Lie algebra is semisimple.

Let $M_m(k)$ denote the ring of all $n \times n$ matrices over k. We define $\mathfrak{gl}_n(k)$ to be the Lie algebra $[M_n(k)]$ formed from $M_n(k)$ via the commutator product. We denote this Lie algebra by $\mathfrak{gl}_n(k)$.

Definition

A **representation** of a Lie algebra \mathfrak{g} is a homomorphism of Lie algebras $\rho : \mathfrak{g} \to \mathfrak{gl}_n(k)$.

Definition

A g-module is a k-vector space V equipped with a left g-action

 $\mathfrak{g} \times \mathit{V} \to \mathit{V}$ satisfying the following properties:

•
$$(x, v) \mapsto xv$$
 is linear in x and v.

►
$$[x, y]v = x(yv) - y(xv)$$
 for all $x, y \in \mathfrak{g}, v \in V$.

Example

The vector space \mathfrak{g} forms a \mathfrak{g} -module via the action $(x, y) \mapsto [x, y]$.

- ▶ We have [[x, y], z] = [x, [y, z]] [y, [x, z]] by the Jacobi identity.
- ► We call this module the adjoint module and denote the action of x on the vector y by ad x · y.
- We have $\operatorname{ad}[x, y] = \operatorname{ad} x \operatorname{ad} y \operatorname{ad} y \operatorname{ad} x$.

From now on, we assume that \mathfrak{g} is a finite-dimensional Lie algebra over the field \mathbb{C} of complex numbers.

Theorem (Lie's theorem)

Let g be a solvable Lie algebra and V a finite-dimensional irreducible g-module. Then dim V = 1.

Corollary

Let g be a solvable Lie algebra and V a finite-dimensional g-module. Then a basis can be chosen for V with respect to which we obtain a matrix representation ρ of g of the form

Let V be a finite-dimensional vector space and let $T : V \to V$ be a linear transformation with eigenvalues $\lambda_1, \ldots, \lambda_r$.

The **generalized eigenspace** of V with respect to λ_i is the set of all $v \in V$ annihilated by some power of $T - \lambda_i \mathbf{1}$.

We have

- $\blacktriangleright V = V_1 \oplus \cdots \oplus V_r.$
- Each V_i is invariant under the action of T.

Theorem

Let g be a nilpotent Lie algebra and V a finite-dimensional g-module. Then for any $y \in g$, the generalized eigenspaces of V associated with $\rho(y)$ are all submodules of V.

Corollary

Let \mathfrak{g} be a nilpotent Lie algebra and V a finite-dimensional indecomposable \mathfrak{g} -module. Then a basis can be chosen for V with respect to which we obtain a representation ρ of \mathfrak{g} of the form

Notice that $\lambda : x \mapsto \lambda(x)$ is a 1-dimensional representation of \mathfrak{g} .

Let \mathfrak{g} be a Lie algebra and V a finite-dimensional \mathfrak{g} -module. For any 1-dimensional representation λ of \mathfrak{g} , we define the set

$$V_{\lambda} = \{ v \in V \mid (orall x \in \mathfrak{g}) (\exists N(x) \geq 1) \quad (
ho(x) - \lambda(x) 1)^{N(x)} v = 0 \}.$$

Theorem

$$V = \bigoplus_{\lambda} V_{\lambda}$$
, and each V_{λ} is a submodule of V .

Definition

If $V_{\lambda} \neq 0$, then we call λ a weight of \mathfrak{g} and V_{λ} the weight space of λ . We call $V = \bigoplus_{\lambda} V_{\lambda}$ the weight space decomposition of V.

Since each V_{λ} is the direct sum of the indecomposable components giving rise to λ , it follows that a basis can be chosen for V_{λ} with respect to which a representation ρ of g on V_{λ} has the form

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem (Engel's theorem)

A Lie algebra \mathfrak{g} is nilpotent if and only if $\operatorname{ad} x : \mathfrak{g} \to \mathfrak{g}$ is nilpotent for all $x \in \mathfrak{g}$.

Corollary

A Lie algebra \mathfrak{g} is nilpotent if and only if \mathfrak{g} has a basis with respect to which the adjoint representation of \mathfrak{g} has the form

$$\rho(x) = \begin{pmatrix} 0 & & & * \\ & \cdot & & & \\ & & \cdot & & \\ & & & \cdot & \\ 0 & & & 0 \end{pmatrix} \quad \text{for all } x \in \mathfrak{g}.$$

Notice that if \mathfrak{h} is a subalgebra of a Lie algebra \mathfrak{g} , then \mathfrak{h} induces an \mathfrak{h} -module structure on \mathfrak{g} via the adjoint action.

If \mathfrak{g} is semisimple and \mathfrak{h} is chosen carefully, then \mathfrak{h} induces weight space decomposition of \mathfrak{g} that tells us a lot about a Lie algebra's structure.

Definition

Let $\mathfrak h$ be a subalgebra of a Lie algebra $\mathfrak g.$ We define the **normalizer** of $\mathfrak h$ to be the set

$$N(\mathfrak{h}) = \{x \in \mathfrak{g} \mid [h, x] \in \mathfrak{h} \text{ for all } h \in \mathfrak{h}\}.$$

Proposition

 $N(\mathfrak{h})$ is a subalgebra of \mathfrak{g} , \mathfrak{h} is an ideal of $N(\mathfrak{h})$, and $N(\mathfrak{h})$ is the largest subalgebra of \mathfrak{g} containing \mathfrak{h} as an ideal.

Proof.

• If
$$x, y \in N(\mathfrak{h})$$
, $h \in \mathfrak{h}$, then

$$[h,[x,y]] = [[y,h],x] + [[h,x],y] \in \mathfrak{h}$$

by the Jacobi identity, and so $N(\mathfrak{h})$ is a subalgebra of \mathfrak{g} .

- \mathfrak{h} is clearly an ideal of $N(\mathfrak{h})$.
- If \mathfrak{h} is an ideal of \mathfrak{m} , then $[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{h}$ so that $\mathfrak{m} \subset N(\mathfrak{h})$.

A subalgebra \mathfrak{h} of \mathfrak{g} is a **Cartan subalgebra** of \mathfrak{g} if \mathfrak{h} is nilpotent and $N(\mathfrak{h}) = \mathfrak{h}$.

Definition

Let $x \in \mathfrak{g}$. The **null component** $\mathfrak{g}_{0,x}$ of \mathfrak{g} with respect to x is the generalized eigenspace of ad $x : \mathfrak{g} \to \mathfrak{g}$, that is,

$$\mathfrak{g}_{0,x} = \{y \in \mathfrak{g} \mid (\operatorname{ad} x)^n y = 0 \quad \text{for some } n \geq 1\}.$$

Definition

An element $x \in \mathfrak{g}$ is **regular** if dim $\mathfrak{g}_{0,x}$ is as small as possible.

Any Lie algebra will certainly contain regular elements.

Theorem

If x is a regular element of \mathfrak{g} , then $\mathfrak{g}_{0,x}$ is a Cartan subalgebra of \mathfrak{g} .

Definition

A **derivation** of a Lie algebra \mathfrak{g} is a linear map $D : \mathfrak{g} \to \mathfrak{g}$ satisfying

$$D[x, y] = [Dx, y] + [x, Dy]$$
 for all $x, y \in \mathfrak{g}$.

Proposition

ad x is a derivation for all $x \in \mathfrak{g}$.

Proof.

 $\mathsf{ad}x \cdot [y, z] = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = [\mathsf{ad}x \cdot y, z] + [y, \mathsf{ad}x \cdot z]. \quad \Box$

The automorphisms of \mathfrak{g} form a group $Aut(\mathfrak{g})$ under composition of maps.

Proposition

If D is a nilpotent derivation of \mathfrak{g} , then $\exp(D)$ is an automorphism of \mathfrak{g} .

Definition

An **inner automorphism** of \mathfrak{g} is an automorphism of the form $\exp(\operatorname{ad} x)$ for $x \in \mathfrak{g}$ with $\operatorname{ad} x$ nilpotent. The **inner automorphism group** is the subgroup $\operatorname{Inn}(\mathfrak{g})$ of $\operatorname{Aut}(\mathfrak{g})$ generated by all inner automorphisms.

Proposition

 $Inn(\mathfrak{g})$ is a normal subgroup of $Aut(\mathfrak{g})$.

Two subalgebras $\mathfrak{h}, \mathfrak{k}$ are **conjugate** in \mathfrak{g} if there exists a $\phi \in \mathsf{Inn}(\mathfrak{g})$ such that $\phi(\mathfrak{h}) = \mathfrak{k}$.

Theorem

Any two Cartan subalgebras of g are conjugate.

Let \mathfrak{g} be a Lie algebra and \mathfrak{h} a Cartan subalgebra of \mathfrak{g} . Since \mathfrak{h} is nilpotent, the adjoint action of \mathfrak{h} on \mathfrak{g} induces a weight space decomposition $\mathfrak{g} = \bigoplus_{\lambda} \mathfrak{g}_{\lambda}$ where

$$\mathfrak{g}_{\lambda} = \{x \in \mathfrak{g} \mid (orall h \in \mathfrak{h}) (\exists n \geq 1) \ (ad \ h - \lambda(h) 1)^n x = 0 \}.$$

Proposition

 $\mathfrak{h}=\mathfrak{g}_0.$

Proof.

Since \mathfrak{h} is nilpotent, we can choose a basis of \mathfrak{g} with respect to which ad x is represented by a strict upper-triangular matrix for all $x \in \mathfrak{h}$. This follows from the corollary to Engel's theorem.

Each such matrix has eigenvalue zero, and so $\mathfrak{h} \subset \mathfrak{g}_0$.

Now suppose $\mathfrak{h} \neq \mathfrak{g}_0$ and let $\mathfrak{m}/\mathfrak{h}$ be an irreducible \mathfrak{h} -submodule of $\mathfrak{g}_0/\mathfrak{h}$.

By Lie's theorem, we have dim $\mathfrak{m}/\mathfrak{h} = 1$. The 1-dimensional representation induced by $\mathfrak{m}/\mathfrak{h}$ must be the zero map since \mathfrak{h} is nilpotent.

Hence $[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{h}$, and so $\mathfrak{m} \subset N(\mathfrak{h})$. This contradicts the fact that $\mathfrak{h} = N(\mathfrak{h})$.

Thus we obtain a decomposition of \mathfrak{g} of the form

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}_{\lambda_1} \oplus \cdots \oplus \mathfrak{g}_{\lambda_r} \qquad \lambda_1, \dots, \lambda_r \neq 0.$$

Definition

A 1-dimensional representation λ of \mathfrak{h} is called a **root** of \mathfrak{g} with respect to \mathfrak{h} if $\lambda \neq 0$ and $\mathfrak{g}_{\lambda} \neq 0$. We denote the set of roots of \mathfrak{g} with respect to \mathfrak{h} by Φ . Thus

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}.$$

We call this decomposition the **Cartan decomposition** of \mathfrak{g} with respect to \mathfrak{h} . Each \mathfrak{g}_{α} is called the **root space** of α .

(日) (日) (日) (日) (日) (日) (日) (日)

Proposition

If λ and μ are 1-dimensional representations of \mathfrak{h} , then $[\mathfrak{g}_{\lambda},\mathfrak{g}_{\mu}] \subset \mathfrak{g}_{\lambda+\mu}$.

Proof.

Let $y \in \mathfrak{g}_{\lambda}$ and $z \in \mathfrak{g}_{\mu}$. If $x \in \mathfrak{h}$, then

$$(\operatorname{ad} x - \lambda(x)1 - \mu(x)1)^n[y, z] = \sum_{i=0}^n \binom{n}{i} [(\operatorname{ad} x - \lambda(x)1)^i y, (\operatorname{ad} x - \mu(x)1)^{n-i} z].$$

Hence $(ad x - \lambda(x)1 - \mu(x)1)^n[y, z] = 0$ if *n* is sufficiently large.

Corollary

If $\alpha, \beta \in \Phi$ are roots of \mathfrak{g} with respect to \mathfrak{h} , then

$$\begin{split} [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta} & \text{if } \alpha+\beta \in \Phi \\ [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subset \mathfrak{h} & \text{if } \beta=-\alpha \\ [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = 0 & \text{if } \alpha+\beta \neq 0 \text{ and } \alpha+\beta \notin \Phi. \end{split}$$

Proposition

Let $\alpha \in \Phi$. Given any $\beta \in \Phi$, there exists a number $r \in \mathbb{Q}$, depending on α and β , such that $\beta = r\alpha$ on the subspace $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ of \mathfrak{h} .

Proof.

If $-\alpha$ is not a weight of \mathfrak{g} with respect to \mathfrak{h} , then $\mathfrak{g}_{-\alpha} = 0$, and the proof is trivial.

So assume $-\alpha$ is a weight. Then since $\alpha \neq 0$, we must have $-\alpha \in \Phi$. For $i \in \mathbb{Z}$, we consider the function $i\alpha + \beta : \mathfrak{h} \to \mathbb{C}$. Since Φ is finite, there exist integers p and q with $p \ge 0$ and $q \ge 0$ such that

$$-p\alpha + \beta, \ldots, \beta, \ldots, q\alpha + \beta$$

are all in Φ but $-(p+1)\alpha + \beta$ and $(q+1)\alpha + \beta$ are not in Φ .

If either $-(p+1)\alpha + \beta = 0$ or $(q+1)\alpha + \beta = 0$, then the result is obvious.

So assume $-(p+1)\alpha + \beta \neq 0$ and $(q+1)\alpha + \beta \neq 0$. Let \mathfrak{m} be the subspace of \mathfrak{g} given by

$$\mathfrak{m} = \mathfrak{g}_{-p\alpha+\beta} \oplus \cdots \oplus \mathfrak{g}_{q\alpha+\beta}.$$

Let
$$x = [y, z]$$
 with $y \in \mathfrak{g}_{\alpha}$ and $z \in \mathfrak{g}_{-\alpha}$. We have
ad $y \cdot \mathfrak{g}_{q\alpha+\beta} \subset \mathfrak{g}_{(q+1)\alpha+\beta}$. Because $(q+1)\alpha + \beta \neq 0$ and
 $(q+1)\alpha + \beta \notin \Phi$, we must have $\mathfrak{g}_{(q+1)\alpha+\beta} = 0$.

Thus ad $y \cdot \mathfrak{m} \subset \mathfrak{m}$. By a similar argument, we have ad $z \cdot \mathfrak{m} \subset \mathfrak{m}$, and so

ad
$$x \cdot \mathfrak{m} = (\operatorname{ad} y \operatorname{ad} z - \operatorname{ad} z \operatorname{ad} y)\mathfrak{m} \subset \mathfrak{m}$$
.

We calculate the trace $tr_{\mathfrak{m}}(ad x)$. Since $x \in \mathfrak{h}$, each weight space $\mathfrak{g}_{i\alpha+\beta}$ is invariant under ad x. Thus

$$\operatorname{tr}_{\mathfrak{m}}(\operatorname{\mathsf{ad}} x) = \sum_{i=-p}^{q} \operatorname{tr}_{\mathfrak{g}_{ilpha+eta}}(\operatorname{\mathsf{ad}} x).$$

Now ad x acts on $\mathfrak{g}_{i\alpha+\beta}$ via a matrix of the form

$$\begin{pmatrix} (i\alpha+\beta)(x) & * \\ & \ddots & \\ & \ddots & \\ & & \ddots & \\ 0 & & (i\alpha+\beta)(x) \end{pmatrix}$$

٠

Thus $\operatorname{tr}_{\mathfrak{g}_{i\alpha+\beta}}(\operatorname{ad} x) = \dim \mathfrak{g}_{i\alpha+\beta}(i\alpha+\beta)(x).$

It follows that

$$\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} x) = \sum_{i=-p}^{q} \dim \mathfrak{g}_{i\alpha+\beta}(i\alpha+\beta)(x)$$
$$= \left(\sum_{i=-p}^{q} i \dim \mathfrak{g}_{i\alpha+\beta}\right) \alpha(x) + \left(\sum_{i=-p}^{q} \dim \mathfrak{g}_{i\alpha+\beta}\right) \beta(x).$$

But we also have

$$\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} x) = \operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} y \operatorname{ad} z - \operatorname{ad} z \operatorname{ad} y) = \operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} y \operatorname{ad} z) - \operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} z \operatorname{ad} y) = 0.$$

Hence

$$\left(\sum_{i=-p}^{q} i \dim \mathfrak{g}_{i\alpha+\beta}\right) \alpha(x) + \left(\sum_{i=-p}^{q} \dim \mathfrak{g}_{i\alpha+\beta}\right) \beta(x) = 0.$$

We know that $\dim \mathfrak{g}_{i\alpha+\beta}>0$ for all $-p\leq i\leq q.$ Thus

$$\beta(x) = \frac{\left(\sum_{i=-p}^{q} i \dim \mathfrak{g}_{i\alpha+\beta}\right)}{\left(\sum_{i=-p}^{q} \dim \mathfrak{g}_{i\alpha+\beta}\right)} \alpha(x).$$

We define the Killing form of \mathfrak{g} to be the bilinear form $\mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ given by $\langle x, y \rangle = tr(ad x ad y)$.

Proposition

- (i) The Killing form is symmetric, i.e., $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathfrak{g}$.
- (ii) The Killing form is invariant, i.e., $\langle [x, y], z \rangle = \langle x, [y, z] \rangle$ for all $x, y, z \in g$.

Proposition

Let a be an ideal of g and let $x, y \in a$. Then $\langle x, y \rangle_{a} = \langle x, y \rangle_{g}$. Hence the killing form of g restricted to a is the Killing form of a.

Proof.

We choose a basis of \mathfrak{a} and extend it to a basis of \mathfrak{g} . With respect to this basis, ad $x : \mathfrak{g} \to \mathfrak{g}$ is represented by a matrix of the form

$$\begin{pmatrix} A_1 & A_2 \\ 0 & 0 \end{pmatrix}$$

since $x \in \mathfrak{a}$.

Similarly, ad $y : \mathfrak{g} \to \mathfrak{g}$ is represented by a matrix of the form

$$\begin{pmatrix} B_1 & B_2 \\ 0 & 0 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thus ad x ad $y : \mathfrak{g} \to \mathfrak{g}$ is represented by the matrix

$$\begin{pmatrix} A_1B_1 & A_1B_2 \\ 0 & 0 \end{pmatrix}$$

Hence $\operatorname{tr}_{\mathfrak{a}}(\operatorname{ad} x \operatorname{ad} y) = \operatorname{tr}(A_1B_1) = \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} x \operatorname{ad} y)$, and so $\langle x, y \rangle_{\mathfrak{a}} = \langle x, y \rangle_{\mathfrak{g}}.$

Proposition

If a is an ideal of g, then a^{\perp} is an ideal of g.

Proof.

If $[x, y] \in [\mathfrak{a}^{\perp}, \mathfrak{g}]$ with $x \in \mathfrak{a}^{\perp}$ and $y \in \mathfrak{g}$, then for all $z \in \mathfrak{a}$, we have

$$\langle [x,y],z\rangle = \langle x,[y,z]\rangle = 0.$$

In particular, \mathfrak{g}^{\perp} is an ideal of \mathfrak{g} .

The Killing form of \mathfrak{g} is **nondegenerate** if $\mathfrak{g}^{\perp} = 0$. The Killing form of \mathfrak{g} is **identically zero** if $\mathfrak{g}^{\perp} = \mathfrak{g}$.

Proposition

Let g be a Lie algebra such that $g \neq 0$ and $g^2 = g$. Let \mathfrak{h} be a Cartan subalgebra of g. Then there exists an $x \in \mathfrak{h}$ such that $\langle x, x \rangle \neq 0$.

Proof.

Let $\mathfrak{g}=\oplus\mathfrak{g}_{\lambda}$ be the Cartan decomposition of $\mathfrak{g}.$ Then

$$\mathfrak{g}^2 = [\mathfrak{g}, \mathfrak{g}] = \left[\bigoplus_{\lambda} \mathfrak{g}_{\lambda}, \bigoplus_{\lambda} \mathfrak{g}_{\lambda} \right] = \sum_{\lambda, \mu} [\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}].$$

We have $[\mathfrak{g}_{\lambda},\mathfrak{g}_{\mu}] \subset \mathfrak{g}_{\lambda+\mu}$. Thus $[\mathfrak{g}_{\lambda},\mathfrak{g}_{-\lambda}] \subset \mathfrak{h}$, while $[\mathfrak{g}_{\lambda},\mathfrak{g}_{\mu}]$ is contained in the complement of \mathfrak{h} in \mathfrak{g} if $\mu \neq -\lambda$. Since $\mathfrak{g} = \mathfrak{g}^2$, we must have

$$\mathfrak{h} = \sum_{\lambda} [\mathfrak{g}_{\lambda}, \mathfrak{g}_{-\lambda}]$$

summed over all weights λ such that $-\lambda$ is also a weight.

Thus

$$\mathfrak{h} = [\mathfrak{h}, \mathfrak{h}] + \sum_{lpha} [\mathfrak{g}_{lpha}, \mathfrak{g}_{-lpha}]$$

summed over all roots α such that $-\alpha$ is also a root.

Note that \mathfrak{g} is not nilpotent since $\mathfrak{g}^2 = \mathfrak{g} \neq 0$. But we know that \mathfrak{h} is nilpotent, and so $\mathfrak{h} \neq \mathfrak{g}$. Thus there exists at least one root $\beta \in \Phi$.

Now β is a 1-dimensional representation of \mathfrak{h} , and so β vanishes on $[\mathfrak{h}, \mathfrak{h}]$. But β does not vanish on \mathfrak{h} since $\beta \neq 0$. Using the above decomposition of \mathfrak{h} , we see there exists some root $\alpha \in \Phi$ such that $-\alpha \in \Phi$ and β does not vanish on $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$. Choose an $x \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ such that $\beta(x) \neq 0$. Then

$$\langle x,x
angle = {\sf tr}({\sf ad}\ x\ {\sf ad}\ x) = \sum_\lambda {\sf dim}\, {\mathfrak g}_\lambda(\lambda(x))^2$$

since ad x is represented on \mathfrak{g}_{λ} by a matrix of the form

For each λ , there exists an $r_{\lambda,\alpha} \in \mathbb{Q}$ such that $\lambda(x) = r_{\lambda,\alpha}\alpha(x)$.

Thus

$$\langle x,x\rangle = \left(\sum_{\lambda} \dim \mathfrak{g}_{\lambda} r_{\lambda,\alpha}^2\right) \alpha(x)^2.$$

Now $\beta(x) = r_{\beta,\alpha}\alpha(x)$ and $\beta(x) \neq 0$. Thus $r_{\beta,\alpha} \neq 0$ and $\alpha(x) \neq 0$. It follows that $\langle x, x \rangle \neq 0$.

Theorem

If the Killing form of \mathfrak{g} is identically zero, then \mathfrak{g} is solvable.

Proof.

We proceed by induction on dim g. If dim g = 1, then g is clearly solvable. So assume dim g > 1.

By the contrapositive of the last proposition, we see that $\mathfrak{g} \neq \mathfrak{g}^2$. Now \mathfrak{g}^2 is an ideal of \mathfrak{g} , so the Killing form of \mathfrak{g}^2 is the restriction of the Killing form of \mathfrak{g} .

Hence the Killing form of \mathfrak{g}^2 is identically zero. It follows by induction that \mathfrak{g}^2 is solvable. We also have $(\mathfrak{g}/\mathfrak{g}^2)^2 = 0$, and so $\mathfrak{g}/\mathfrak{g}^2$ is solvable. Thus \mathfrak{g} is solvable.

Theorem (Cartan's criterion)

A Lie algebra \mathfrak{g} is semisimple if and only if the Killing form of \mathfrak{g} is nondegenerate.

Proof.

We prove the contrapositive. If the Killing form of $\mathfrak g$ is degenerate, then $\mathfrak g^\perp\neq 0.$

We know that \mathfrak{g}^{\perp} is an ideal, and thus the Killing form of \mathfrak{g}^{\perp} is identically zero. This implies \mathfrak{g}^{\perp} is solvable by the last theorem.

Thus \mathfrak{g} has a nonzero solvable ideal, and so \mathfrak{g} is not semisimple.

Now suppose \mathfrak{g} is not semisimple. Then the solvable radical \mathfrak{r} of \mathfrak{g} is nonzero. Consider the chain of subspaces

$$\mathfrak{r} = \mathfrak{r}^{(0)} \supset \mathfrak{r}^{(1)} \supset \mathfrak{r}^{(2)} \supset \cdots \supset \mathfrak{r}^{(k-1)} \supset \mathfrak{r}^{(k)} = 0.$$

Each subspace $\mathfrak{r}^{(i)}$ is an ideal of \mathfrak{g} since the product of two ideals is an ideal.

Let $\mathfrak{a} = \mathfrak{r}^{(k-1)}$. Then \mathfrak{a} is a nonzero ideal such that $\mathfrak{a}^2 = 0$. We choose a basis of \mathfrak{a} and extend it to a basis of \mathfrak{g} .

Let $x \in \mathfrak{a}$, $y \in \mathfrak{g}$. With respect to our chosen basis, ad x is represented by a matrix of the form

$$\left(\begin{array}{cc}
0 & A \\
0 & 0
\end{array}\right)$$

since $a^2 = 0$ and a is an ideal of g, and ad y is represented by a matrix of the form

$$\begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix}$$

Thus $\operatorname{ad} x$ $\operatorname{ad} y$ is represented by the matrix

$$\begin{pmatrix} 0 & AB_3 \\ 0 & 0 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Hence $\langle x, y \rangle = tr(ad x ad y) = 0$. This holds for all $x \in \mathfrak{a}, y \in \mathfrak{g}$, and so $\mathfrak{a} \subset \mathfrak{g}^{\perp}$. Thus $\mathfrak{g}^{\perp} \neq 0$, and so the Killing form of \mathfrak{g} is degenerate.

From now on, we assume that ${\mathfrak g}$ is a semisimple Lie algebra.

Proposition

If $\mu \neq -\lambda$, then \mathfrak{g}_{λ} and \mathfrak{g}_{μ} are orthogonal with respect to the Killing form.

Proof.

Let $x \in \mathfrak{g}_{\lambda}$, $y \in \mathfrak{g}_{\mu}$. For every weight space \mathfrak{g}_{ν} , we have

ad x ad $y \cdot \mathfrak{g}_{\nu} \subset \mathfrak{g}_{\lambda+\mu+\nu}$.

We choose a basis of \mathfrak{g} adapted to the Cartan decomposition. With respect to such a basis, ad x ad y is represented by a block matrix of the form

It follows that $\langle x, y \rangle = tr(ad x ad y) = 0$, and so \mathfrak{g}_{λ} is orthogonal to \mathfrak{g}_{μ} .

If α is a root of g with respect to \mathfrak{h} , then $-\alpha$ is also a root.

Proof.

Recall that α is a root if $\alpha \neq 0$ and $\mathfrak{g}_{\alpha} \neq 0$. Suppose $-\alpha$ is not a root.

Then since $-\alpha \neq 0$, we must have $\mathfrak{g}_{-\alpha} = 0$. This implies that \mathfrak{g}_{α} is orthogonal to all \mathfrak{g}_{λ} , and thus $\mathfrak{g}_{\alpha} \subset \mathfrak{g}^{\perp}$.

But \mathfrak{g} is semisimple, and so $\mathfrak{g}^{\perp} = 0$ by Cartan's criterion. Thus $\mathfrak{g}_{\alpha} = 0$, contradicting the fact that α is a root.

The Killing form of \mathfrak{g} remains nondegenerate on restriction to \mathfrak{h} .

Proof.

Let $x \in \mathfrak{h}$ and suppose $\langle x, y \rangle = 0$ for all $y \in \mathfrak{h}$. We also have $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}_{\alpha}$ where $\alpha \in \Phi$.

Thus $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, and so $x \in \mathfrak{g}^{\perp}$. But $\mathfrak{g}^{\perp} = 0$ since \mathfrak{g} is semisimple, and so x = 0.

Theorem

The Cartan subalgebras of a semisimple Lie algebra are abelian.

Proof.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . For all $x \in [\mathfrak{h}, \mathfrak{h}]$, $y \in \mathfrak{h}$, we have

$$\langle x, y
angle = \mathsf{tr}(\mathsf{ad} \ x \ \mathsf{ad} \ y) = \sum_{\lambda} \dim \mathfrak{g}_{\lambda} \ \lambda(x) \lambda(y)$$

since $\operatorname{ad} x$ $\operatorname{ad} y$ is represented on \mathfrak{g}_{λ} by a matrix of the form

But λ is a 1-dimensional representation of \mathfrak{h} , and so λ vanishes on $[\mathfrak{h}, \mathfrak{h}]$. Thus $\lambda(x) = 0$. It follows that $\langle x, y \rangle = 0$ for all $y \in \mathfrak{h}$.

Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies x = 0. Hence $[\mathfrak{h}, \mathfrak{h}] = 0$, and so \mathfrak{h} is abelian.

Let $\mathfrak{h}^* = Hom(\mathfrak{h}, \mathbb{C})$ be the dual space of \mathfrak{h} . We have dim $\mathfrak{h}^* = \dim \mathfrak{h}$.

We define a map $\mathfrak{h} \to \mathfrak{h}^*$ using the Killing form of \mathfrak{g} . Given $h \in \mathfrak{h}$, we define $h^* \in \mathfrak{h}^*$ by

$$h^*(x) = \langle h, x \rangle$$
 for all $x \in \mathfrak{h}$.

Lemma

The map $h \mapsto h^*$ is an isomorphism of vector spaces between \mathfrak{h} and \mathfrak{h}^* .

Notice that Φ is a finite subset of \mathfrak{h}^* .

Because the map $h \mapsto h^*$ is bijective, we know that for each $\alpha \in \Phi$, there exists a unique element $h'_{\alpha} \in \mathfrak{h}$ such that $h'^*_{\alpha}(x) = \alpha(x)$ for all $x \in \mathfrak{h}$, that is,

$$\alpha(x) = \langle h'_{\alpha}, x \rangle$$
 for all $x \in \mathfrak{h}$.

Proposition

The vectors h'_{α} for $\alpha \in \Phi$ span \mathfrak{h} .

Proof.

Suppose the vectors h'_{α} are contained in a proper subspace of \mathfrak{h} . Then the annihilator of this subspace is nonzero.

Thus there exists a nonzero $x \in \mathfrak{h}$ such that $x^*(h'_{\alpha}) = 0$ for all $\alpha \in \Phi$, that is, $\langle h'_{\alpha}, x \rangle = 0$. Hence $\alpha(x) = 0$ for all $\alpha \in \Phi$. Let $y \in \mathfrak{h}$. Then

$$\langle x, y \rangle = \operatorname{tr}(\operatorname{ad} x \operatorname{ad} y) = \sum_{\lambda} \operatorname{dim} \mathfrak{g}_{\lambda} \ \lambda(x)\lambda(y) = 0$$

since $\lambda(x) = 0$ for all weights λ .

Thus $\langle x, y \rangle = 0$ for all $y \in \mathfrak{h}$. Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies x = 0, a contradiction.

Proposition

 $h'_{\alpha} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ for all $\alpha \in \Phi$.

Proof.

We know that \mathfrak{g}_{α} is an \mathfrak{h} -module. Since all irreducible \mathfrak{h} -modules are 1-dimensional, \mathfrak{g}_{α} contains a 1-dimensional \mathfrak{h} -submodule $\mathbb{C}e_{\alpha}$.

We have $[x, e_{\alpha}] = \alpha(x)e_{\alpha}$ for all $x \in \mathfrak{h}$.

Let $y \in \mathfrak{g}_{-\alpha}$. Then $[e_{\alpha}, y] \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \subset \mathfrak{h}$. I claim that $[e_{\alpha}, y] = \langle e_{\alpha}, y \rangle h'_{\alpha}$.

We define the element

$$z = [e_{\alpha}, y] - \langle e_{\alpha}, y \rangle h'_{\alpha} \in \mathfrak{h}.$$

Let $x \in \mathfrak{h}$. Then

$$egin{aligned} &\langle x,z
angle &= \langle x,[e_lpha,y]
angle - \langle e_lpha,y
angle \langle x,h_lpha
angle \ &= \langle [x,e_lpha],y
angle - \langle e_lpha,y
angle lpha(x) \ &= lpha(x)\langle e_lpha,y
angle - \langle e_lpha,y
angle lpha(x) = 0. \end{aligned}$$

Thus $\langle x, z \rangle = 0$ for all $x \in \mathfrak{h}$. Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies z = 0. Hence $[e_{\alpha}, y] = \langle e_{\alpha}, y \rangle h'_{\alpha}$ for all $y \in \mathfrak{g}_{-\alpha}$.

Now there exists a $y \in \mathfrak{g}_{-\alpha}$ such that $\langle e_{\alpha}, y \rangle \neq 0$. For otherwise e_{α} would be orthogonal to $\mathfrak{g}_{-\alpha}$, and thus to the whole of \mathfrak{g} .

This would imply $e_{\alpha} \in \mathfrak{g}^{\perp}$. But $\mathfrak{g}^{\perp} = 0$ since \mathfrak{g} is semisimple, and so $e_{\alpha} = 0$, a contradiction.

Choosing a $y \in \mathfrak{g}_{-\alpha}$ such that $\langle e_{\alpha}, y \rangle \neq 0$, we have

$$h'_{lpha} = rac{1}{\langle {f e}_{lpha}, y
angle} [{f e}_{lpha}, y] \in [{f g}_{lpha}, {f g}_{-lpha}].$$

Proposition

 $\langle h'_{\alpha}, h'_{\alpha} \rangle \neq 0$ for all $\alpha \in \Phi$.

Proof.

Suppose $\langle h'_{\alpha}, h'_{\alpha} \rangle = 0$ for some $\alpha \in \Phi$. Let β be any element of Φ .

There exists an $r_{\beta,\alpha} \in \mathbb{Q}$ such that $\beta = r_{\beta,\alpha}\alpha$ on $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$.

Now $h'_{\alpha} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$. Thus

$$\beta(\mathbf{h}'_{\alpha}) = \mathbf{r}_{\beta,\alpha}\alpha(\mathbf{h}'_{\alpha}),$$

that is, $\left\langle {{\it h}'_eta ,{\it h}'_lpha }
ight
angle = {\it r}_{eta ,lpha } \left\langle {{\it h}'_lpha ,{\it h}'_lpha }
ight
angle = 0.$

This holds for all $\beta \in \Phi$. But the vectors h'_{α} for $\alpha \in \Phi$ span \mathfrak{h} , and so $\langle x, h'_{\alpha} \rangle = 0$ for all $x \in \mathfrak{h}$.

Since the Killing form of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate, this implies $h'_{\alpha} = 0$. Thus $\alpha = 0$, contradicting the fact that $\alpha \in \Phi$.

Theorem

dim $\mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Phi$.

Proof.

Choose a 1-dimensional \mathfrak{h} -submodule $\mathbb{C}e_{\alpha}$ of \mathfrak{g}_{α} . We can find an $e_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $[e_{\alpha}, e_{-\alpha}] = h'_{\alpha}$.

Consider the subspace $\mathfrak m$ of $\mathfrak g$ given by

$$\mathfrak{m} = \mathbb{C} e_{\alpha} \oplus \mathbb{C} h'_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{-2\alpha} \oplus \cdots$$

There are only finitely-many summands of \mathfrak{m} since Φ is finite. Thus there are only finitely-many non-negative integers r such that $\mathfrak{g}_{-r\alpha} = 0$.

Observe that ad $e_{\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$ because

$$\begin{split} & [e_{\alpha}, e_{\alpha}] = 0, \\ & [e_{\alpha}, h'_{\alpha}] = -\alpha \left(h'_{\alpha} \right) e_{\alpha}, \\ & [e_{\alpha}, y] = \langle e_{\alpha}, y \rangle h'_{\alpha} \qquad \text{for all } y \in \mathfrak{g}_{-\alpha}. \end{split}$$

and

ad
$$e_{\alpha} \cdot \mathfrak{g}_{-r\alpha} \subset \mathfrak{g}_{-(r-1)\alpha}$$
 for all $r \geq 2$.

Similarly, ad $e_{-\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$ because

$$[e_{-\alpha}, e_{\alpha}] = h'_{\alpha},$$
$$[e_{-\alpha}, h'_{\alpha}] = \alpha (h'_{\alpha}) e_{-\alpha},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and ad $e_{\alpha} \cdot \mathfrak{g}_{-r\alpha} \subset \mathfrak{g}_{-(r+1)\alpha}$ for all $r \geq 1$.

Now $h'_{\alpha} = [e_{\alpha}, e_{-\alpha}]$, and so

ad
$$h'_{\alpha} = \operatorname{ad} e_{\alpha}$$
 ad $e_{-\alpha} - \operatorname{ad} e_{-\alpha}$ ad e_{α} .

Thus ad $h'_{\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$.

We calculate the trace of ad h'_{α} on \mathfrak{m} in two different ways. First, we have

$$\begin{split} \operatorname{tr}_{\mathfrak{m}} \left(\operatorname{ad} \, h'_{\alpha} \right) &= \alpha \left(h'_{\alpha} \right) + \operatorname{dim} \mathfrak{g}_{-\alpha} \left(-\alpha \left(h'_{\alpha} \right) \right) + \operatorname{dim} \mathfrak{g}_{-2\alpha} \left(-2\alpha \left(h'_{\alpha} \right) \right) + \cdots \\ &= \alpha \left(h'_{\alpha} \right) \left(1 - \operatorname{dim} \mathfrak{g}_{-\alpha} - 2 \operatorname{dim} \mathfrak{g}_{-2\alpha} - \cdots \right). \end{split}$$

Second, we have

$$\operatorname{tr}_{\mathfrak{m}}(h'_{\alpha})=\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} e_{\alpha} \text{ ad } e_{-\alpha})-\operatorname{tr}_{\mathfrak{m}}(\operatorname{ad} e_{-\alpha} \text{ ad } e_{\alpha})=0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus

$$\alpha(h'_{\alpha})(1-\dim\mathfrak{g}_{-\alpha}-2\dim\mathfrak{g}_{-2\alpha}-\cdots)=0.$$

Now $\alpha(h'_{\alpha}) = \left\langle h'_{\alpha}, h'_{\alpha} \right\rangle \neq 0$, and so

$$1 - \dim \mathfrak{g}_{-\alpha} - 2 \dim \mathfrak{g}_{-2\alpha} - \cdots = 0.$$

This can happen only if dim $\mathfrak{g}_{-\alpha} = 1$ and dim $\mathfrak{g}_{-r\alpha} = 0$ for all $r \geq 2$.

Now $\alpha \in \Phi$ if and only if $-\alpha \in \Phi$. Thus dim $\mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Phi$.

Note that while all of the root spaces g_{α} are 1-dimensional, the space $g_0 = \mathfrak{h}$ need not be 1-dimensional.

(日) (日) (日) (日) (日) (日) (日) (日)

If $\alpha \in \Phi$ and $r\alpha \in \Phi$ where $r \in \mathbb{Z}$, then r = 1 or r = -1.

Proof.

From the above, we have dim $\mathfrak{g}_{-r\alpha} = 0$ for all $r \ge 2$, that is, $-r\alpha$ is not a root.

Now $r\alpha \in \Phi$ if and only if $-r\alpha \in \Phi$. Thus only α and $-\alpha$ can be roots.

We are now ready to examine some stronger properties of the set Φ of roots.

Let $\alpha, \beta \in \Phi$ be roots such that $\beta \neq \alpha$ and $\beta \neq -\alpha$. Then β is not an integer multiple of α .

There do, however, exist integers $p \ge 0, q \ge 0$ such that the elements

$$-\mathbf{p}\alpha + \beta, \dots, -\alpha + \beta, \beta, \alpha + \beta, \dots, \mathbf{q}\alpha + \beta$$

all lie in Φ but $-(p+1)\alpha + \beta$ and $(q+1)\alpha + \beta$ do not.

The set of roots

$$-\mathbf{p}\alpha + \beta, \dots, \mathbf{q}\alpha + \beta$$

(日) (日) (日) (日) (日) (日) (日) (日)

is called the α -**chain** of roots through β .

Let α, β be roots such that $\beta \neq \alpha$ and $\beta \neq -\alpha$. Let

$$-p\alpha + \beta, \ldots, \beta, \ldots, q\alpha + \beta$$

be the α -chain of roots through β . Then

$$rac{\left\langle h_{lpha}^{\prime},h_{eta}^{\prime}
ight
angle }{\left\langle h_{lpha}^{\prime},h_{lpha}^{\prime}
ight
angle }=p-q.$$

Proof.

Consider the subspace \mathfrak{m} of \mathfrak{g} given by

$$\mathfrak{m} = \mathfrak{g}_{-\rho\alpha+\beta} \oplus \cdots \oplus \mathfrak{g}_{q\alpha+\beta}.$$

Recall that $h'_{\alpha} = [e_{\alpha}, e_{-\alpha}] \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}].$

Now β is not an integer multiple of α , and so $-(p+1)\alpha + \beta \neq 0$ and $(q+1)\alpha + \beta \neq 0$.

We have ad $e_{\alpha} \cdot \mathfrak{g}_{q\alpha+\beta} \subset \mathfrak{g}_{(q+1)\alpha+\beta}$. Because $(q+1)\alpha + \beta \neq 0$ and $(q+1)\alpha + \beta \notin \Phi$, we must have $\mathfrak{g}_{(q+1)\alpha+\beta} = 0$.

Thus ad $e_{\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$. By a similar argument, we have ad $e_{-\alpha} \cdot \mathfrak{m} \subset \mathfrak{m}$, and so

$$\text{ad } h'_\alpha \cdot \mathfrak{m} = (\text{ad } e_\alpha \text{ ad } e_{-\alpha} - \text{ad } e_{-\alpha} \text{ ad } e_\alpha)\mathfrak{m} \subset \mathfrak{m}.$$

We calculate the trace of ad h'_{α} on \mathfrak{m} in two different ways. We have

$${\sf tr}_{\mathfrak{m}} \left({\sf ad} \; {\it h}'_{lpha}
ight) = \sum_{i=-p}^{q} (i lpha + eta) \left({\it h}'_{lpha}
ight)$$

since dim $\mathfrak{g}_{i\alpha+\beta} = 1$.

Second, we have

$$\operatorname{\mathsf{tr}}_{\mathfrak{m}}\left(\operatorname{\mathsf{ad}}\, h'_{\alpha}\right)=\operatorname{\mathsf{tr}}_{\mathfrak{m}}(\operatorname{\mathsf{ad}}\, e_{\alpha}\, \operatorname{\mathsf{ad}}\, e_{-\alpha})-\operatorname{\mathsf{tr}}_{\mathfrak{m}}(\operatorname{\mathsf{ad}}\, e_{-\alpha}\, \operatorname{\mathsf{ad}}\, e_{\alpha})=0.$$

Thus

$$\sum_{i=-p}^{q} (i\alpha + \beta) (h'_{\alpha}) = 0,$$

that is,

$$\left(rac{q(q+1)}{2}-rac{p(p+1)}{2}
ight)lpha\left(h_{lpha}'
ight)+(p+q+1)eta\left(h_{lpha}'
ight)=0.$$

Since $p + q + 1 \neq 0$, this yields

$$rac{(q-p)}{2}ig\langle h'_lpha,h'_lphaig
angle +ig\langle h'_lpha,h'_etaig
angle =0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hence

$$rac{\left\langle h_{lpha}^{\prime},h_{eta}^{\prime}
ight
angle }{\left\langle h_{lpha}^{\prime},h_{lpha}^{\prime}
ight
angle }=p-q$$

since $\left< \mathbf{h}_{\alpha}^{\prime}, \mathbf{h}_{\alpha}^{\prime} \right> \neq 0.$

Corollary

If $\alpha \in \Phi$ and $\zeta \alpha \in \Phi$ where $\zeta \in \mathbb{C}$, then $\zeta = 1$ or $\zeta = -1$.

Proof.

Suppose $\zeta \neq \pm 1$ and let $\beta = \zeta \alpha$. Then $\beta(h'_{\alpha}) = \zeta \alpha(h'_{\alpha})$, that is,

$$\langle h'_{\alpha}, h'_{\beta} \rangle = \zeta \langle h'_{\alpha}, h'_{\alpha} \rangle.$$

From the previous proposition, this yields

$$2\zeta = 2rac{\left\langle h'_{lpha}, h'_{eta}
ight
angle}{\left\langle h'_{lpha}, h'_{lpha}
ight
angle} = p - q.$$

Hence $2\zeta \in \mathbb{Z}$. If $\zeta \in \mathbb{Z}$, then $\zeta = \pm 1$. Thus $\zeta \notin \mathbb{Z}$. It follows that p - q is odd.

The α -chain of roots through β is

$$-\left(\frac{p+q}{2}\right)\alpha,\ldots,\beta=\left(\frac{p-q}{2}\right)\alpha,\ldots,\left(\frac{p+q}{2}\right)\alpha.$$

Since p - q is odd and consecutive roots differ by α , we see that all roots in the α -chain are odd multiples of $\frac{1}{2}\alpha$.

Also, $p - q \neq 0$, and so p and q cannot both be zero. Thus $p + q \neq 0$.

Because the first and last roots are negatives of one another, $\frac{1}{2}\alpha$ must lie in the α -chain. Thus $\frac{1}{2}\alpha \in \Phi$.

But $\alpha \in \Phi$, and so $2\left(\frac{1}{2}\alpha\right) \in \Phi$, a contradiction.

$$\langle h'_{\alpha}, h'_{\beta} \rangle \in \mathbb{Q}$$
 for all $\alpha, \beta \in \Phi$.

Proof.

We already know that $\left\langle h'_{lpha},h'_{eta}
ight
angle \in\mathbb{C}.$ We also have

$$2rac{\left\langle \mathbf{h}_{lpha}^{\prime},\mathbf{h}_{eta}^{\prime}
ight
angle }{\left\langle \mathbf{h}_{lpha}^{\prime},\mathbf{h}_{lpha}^{\prime}
ight
angle }\in\mathbb{Z}.$$

Thus $\frac{\langle h'_{\alpha}, h'_{\beta} \rangle}{\langle h'_{\alpha}, h'_{\alpha} \rangle} \in \mathbb{Q}$. It is therefore sufficient to show that $\langle h'_{\alpha}, h'_{\alpha} \rangle \in \mathbb{Q}$. We have

$$\left\langle \textit{h}_{\alpha}^{\prime},\textit{h}_{\alpha}^{\prime}\right\rangle = \mathsf{tr}\left(\mathsf{ad}\;\textit{h}_{\alpha}^{\prime}\;\mathsf{ad}\;\textit{h}_{\alpha}^{\prime}\right) = \sum_{\beta\in\Phi}\left(\beta\left(\textit{h}_{\alpha}^{\prime}\right)\right)^{2} = \sum_{\beta\in\Phi}\left\langle\textit{h}_{\alpha}^{\prime},\textit{h}_{\beta}^{\prime}\right\rangle^{2}.$$

Dividing by $\left< h_{lpha}', h_{lpha}' \right>^2$, this yields

$$rac{1}{ig\langle h'_lpha, h'_lphaig
angle} = \sum_{eta\in ig } \left(rac{ig\langle h'_lpha, h'_etaig
angle}{ig\langle h'_lpha, h'_lphaig
angle}
ight)^2 \in \mathbb{Z}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence $\left\langle \textit{h}_{\alpha}^{\prime},\textit{h}_{\alpha}^{\prime}
ight
angle \in \mathbb{Q}$, completing the proof.