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Definition

Let k be a field. A k-algebra is a k-vector space A equipped with a

bilinear map A× A → A called multiplication.

Definition

A Lie algebra is a k-algebra g with multiplication (x , y) 7→ [x , y ]

satisfying the following conditions:

(i) [x , x ] = 0 for all x ∈ g.

(ii) [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0 for all x , y , z ∈ g.

Condition (ii) is called the Jacobi identity.



Definition

We define the lower central series of g recursively by

g1 = g, gn+1 = [gn, g] for n ≥ 1.

Proposition

Each gn is an ideal of g, and g = g1 ⊃ g2 ⊃ g3 ⊃ · · · .

Definition

I We say that g is nilpotent if gn = 0 for some n.

I We say that g is abelian if g2 = 0.



Definition

We define the derived series of g recursively by

g(0) = g, g(n+1) =
[
g(n), g(n)

]
for n ≥ 0.

Proposition

Each g(n) is an ideal of g, and g = g(0) ⊃ g(1) ⊃ g(2) ⊃ · · · .

Definition

A Lie algebra g is solvable if g(n) = 0 for some n.

Proposition

Every nilpotent Lie algebra is solvable.



Proposition

Every finite-dimensional Lie algebra contains a unique maximal solvable

ideal r. (This is called the solvable radical.)

Definition

A Lie algebra g is semisimple if r = 0.

Definition

A Lie algebra g is simple if it contains no ideals other than itself and the

zero ideal.

The 1-dimensional Lie algebra is called the trivial simple Lie algebra.

Proposition

Every non-trivial simple Lie algebra is semisimple.



Let Mm(k) denote the ring of all n× n matrices over k. We define gln(k)

to be the Lie algebra [Mn(k)] formed from Mn(k) via the commutator

product. We denote this Lie algebra by gln(k).

Definition

A representation of a Lie algebra g is a homomorphism of Lie algebras

ρ : g → gln(k).

Definition

A g-module is a k-vector space V equipped with a left g-action

g× V → V satisfying the following properties:

I (x , v) 7→ xv is linear in x and v .

I [x , y ]v = x(yv)− y(xv) for all x , y ∈ g, v ∈ V .



Example

The vector space g forms a g-module via the action (x , y) 7→ [x , y ].

I We have [[x , y ], z ] = [x , [y , z ]]− [y , [x , z ]] by the Jacobi identity.

I We call this module the adjoint module and denote the action of x

on the vector y by ad x · y .

I We have ad [x , y ] = ad x ad y − ad y ad x .

From now on, we assume that g is a finite-dimensional Lie algebra

over the field C of complex numbers.



Theorem (Lie’s theorem)

Let g be a solvable Lie algebra and V a finite-dimensional irreducible

g-module. Then dim V = 1.

Corollary

Let g be a solvable Lie algebra and V a finite-dimensional g-module.

Then a basis can be chosen for V with respect to which we obtain a

matrix representation ρ of g of the form

ρ(x) =



∗ ∗

·

·

·

0 ∗


for all x ∈ g.



Let V be a finite-dimensional vector space and let T : V → V be a linear

transformation with eigenvalues λ1, . . . , λr .

The generalized eigenspace of V with respect to λi is the set of all

v ∈ V annihilated by some power of T − λi1.

We have

I V = V1 ⊕ · · · ⊕ Vr .

I Each Vi is invariant under the action of T .

Theorem

Let g be a nilpotent Lie algebra and V a finite-dimensional g-module.

Then for any y ∈ g, the generalized eigenspaces of V associated with

ρ(y) are all submodules of V .



Corollary

Let g be a nilpotent Lie algebra and V a finite-dimensional

indecomposable g-module. Then a basis can be chosen for V with

respect to which we obtain a representation ρ of g of the form

ρ(x) =



λ(x) ∗

·

·

·

0 λ(x)


for all x ∈ g.

Notice that λ : x 7→ λ(x) is a 1-dimensional representation of g.



Let g be a Lie algebra and V a finite-dimensional g-module. For any

1-dimensional representation λ of g, we define the set

Vλ = {v ∈ V | (∀x ∈ g)(∃N(x) ≥ 1) (ρ(x)− λ(x)1)N(x)v = 0}.

Theorem

V =
⊕

λ Vλ, and each Vλ is a submodule of V .

Definition

If Vλ 6= 0, then we call λ a weight of g and Vλ the weight space of λ.

We call V =
⊕

λ Vλ the weight space decomposition of V .



Since each Vλ is the direct sum of the indecomposable components

giving rise to λ, it follows that a basis can be chosen for Vλ with respect

to which a representation ρ of g on Vλ has the form

ρ(x) =



λ(x) ∗

·

·

·

0 λ(x)


for all x ∈ g.



Theorem (Engel’s theorem)

A Lie algebra g is nilpotent if and only if ad x : g → g is nilpotent for all

x ∈ g.

Corollary

A Lie algebra g is nilpotent if and only if g has a basis with respect to

which the adjoint representation of g has the form

ρ(x) =



0 ∗

·

·

·

0 0


for all x ∈ g.



Notice that if h is a subalgebra of a Lie algebra g, then h induces an

h-module structure on g via the adjoint action.

If g is semisimple and h is chosen carefully, then h induces weight space

decomposition of g that tells us a lot about a Lie algebra’s structure.

Definition

Let h be a subalgebra of a Lie algebra g. We define the normalizer of h

to be the set

N(h) = {x ∈ g | [h, x ] ∈ h for all h ∈ h}.



Proposition

N(h) is a subalgebra of g, h is an ideal of N(h), and N(h) is the largest

subalgebra of g containing h as an ideal.

Proof.

I If x , y ∈ N(h), h ∈ h, then

[h, [x , y ]] = [[y , h], x ] + [[h, x ], y ] ∈ h

by the Jacobi identity, and so N(h) is a subalgebra of g.

I h is clearly an ideal of N(h).

I If h is an ideal of m, then [h,m] ⊂ h so that m ⊂ N(h).



Definition

A subalgebra h of g is a Cartan subalgebra of g if h is nilpotent and

N(h) = h.

Definition

Let x ∈ g. The null component g0,x of g with respect to x is the

generalized eigenspace of ad x : g → g, that is,

g0,x = {y ∈ g | (ad x)ny = 0 for some n ≥ 1}.

Definition

An element x ∈ g is regular if dim g0,x is as small as possible.

Any Lie algebra will certainly contain regular elements.



Theorem

If x is a regular element of g, then g0,x is a Cartan subalgebra of g.

Definition

A derivation of a Lie algebra g is a linear map D : g → g satisfying

D[x , y ] = [Dx , y ] + [x ,Dy ] for all x , y ∈ g.

Proposition

ad x is a derivation for all x ∈ g.

Proof.

adx ·[y , z ] = [x , [y , z ]] = [[x , y ], z ]+[y , [x , z ]] = [adx ·y , z ]+[y , adx ·z ].



The automorphisms of g form a group Aut(g) under composition of maps.

Proposition

If D is a nilpotent derivation of g, then exp(D) is an automorphism of g.

Definition

An inner automorphism of g is an automorphism of the form exp(ad x)

for x ∈ g with ad x nilpotent. The inner automorphism group is the

subgroup Inn(g) of Aut(g) generated by all inner automorphisms.

Proposition

Inn(g) is a normal subgroup of Aut(g).



Definition

Two subalgebras h, k are conjugate in g if there exists a φ ∈ Inn(g) such

that φ(h) = k.

Theorem

Any two Cartan subalgebras of g are conjugate.

Let g be a Lie algebra and h a Cartan subalgebra of g. Since h is

nilpotent, the adjoint action of h on g induces a weight space

decomposition g =
⊕

λ gλ where

gλ = {x ∈ g | (∀h ∈ h)(∃n ≥ 1) (ad h − λ(h)1)nx = 0}.

Proposition

h = g0.



Proof.

Since h is nilpotent, we can choose a basis of g with respect to which

ad x is represented by a strict upper-triangular matrix for all x ∈ h. This

follows from the corollary to Engel’s theorem.

Each such matrix has eigenvalue zero, and so h ⊂ g0.

Now suppose h 6= g0 and let m/h be an irreducible h-submodule of g0/h.

By Lie’s theorem, we have dim m/h = 1. The 1-dimensional

representation induced by m/h must be the zero map since h is nilpotent.

Hence [h,m] ⊂ h, and so m ⊂ N(h). This contradicts the fact that

h = N(h).



Thus we obtain a decomposition of g of the form

g = h⊕ gλ1 ⊕ · · · ⊕ gλr λ1, . . . , λr 6= 0.

Definition

A 1-dimensional representation λ of h is called a root of g with respect

to h if λ 6= 0 and gλ 6= 0. We denote the set of roots of g with respect to

h by Φ. Thus

g = h⊕
⊕
α∈Φ

gα.

We call this decomposition the Cartan decomposition of g with respect

to h. Each gα is called the root space of α.



Proposition

If λ and µ are 1-dimensional representations of h, then [gλ, gµ] ⊂ gλ+µ.

Proof.

Let y ∈ gλ and z ∈ gµ. If x ∈ h, then

(adx−λ(x)1−µ(x)1)n[y , z ] =
n∑

i=0

(
n

i

)[
(ad x − λ(x)1)iy , (ad x − µ(x)1)n−iz

]
.

Hence (ad x − λ(x)1− µ(x)1)n[y , z ] = 0 if n is sufficiently large.

Corollary

If α, β ∈ Φ are roots of g with respect to h, then

[gα, gβ] ⊂ gα+β if α + β ∈ Φ

[gα, gβ] ⊂ h if β = −α

[gα, gβ] = 0 if α + β 6= 0 and α + β /∈ Φ.



Proposition

Let α ∈ Φ. Given any β ∈ Φ, there exists a number r ∈ Q, depending on

α and β, such that β = rα on the subspace [gα, g−α] of h.

Proof.

If −α is not a weight of g with respect to h, then g−α = 0, and the proof

is trivial.

So assume −α is a weight. Then since α 6= 0, we must have −α ∈ Φ.

For i ∈ Z, we consider the function iα + β : h → C. Since Φ is finite,

there exist integers p and q with p ≥ 0 and q ≥ 0 such that

−pα + β, . . . , β, . . . , qα + β

are all in Φ but −(p + 1)α + β and (q + 1)α + β are not in Φ.



If either −(p + 1)α + β = 0 or (q + 1)α + β = 0, then the result is

obvious.

So assume −(p + 1)α + β 6= 0 and (q + 1)α + β 6= 0. Let m be the

subspace of g given by

m = g−pα+β ⊕ · · · ⊕ gqα+β .

Let x = [y , z ] with y ∈ gα and z ∈ g−α. We have

ad y · gqα+β ⊂ g(q+1)α+β . Because (q + 1)α + β 6= 0 and

(q + 1)α + β /∈ Φ, we must have g(q+1)α+β = 0.

Thus ad y ·m ⊂ m. By a similar argument, we have ad z ·m ⊂ m, and so

ad x ·m = (ad y ad z − ad z ad y)m ⊂ m.



We calculate the trace trm(ad x). Since x ∈ h, each weight space giα+β

is invariant under ad x . Thus

trm(ad x) =

q∑
i=−p

trgiα+β
(ad x).

Now ad x acts on giα+β via a matrix of the form

(iα + β)(x) ∗

·

·

·

0 (iα + β)(x)


.

Thus trgiα+β
(ad x) = dim giα+β(iα + β)(x).



It follows that

trm(ad x) =

q∑
i=−p

dim giα+β(iα + β)(x)

=

 q∑
i=−p

i dim giα+β

α(x) +

 q∑
i=−p

dim giα+β

β(x).

But we also have

trm(adx) = trm(ady adz−adz ady) = trm(ady adz)−trm(adz ady) = 0.

Hence  q∑
i=−p

i dim giα+β

α(x) +

 q∑
i=−p

dim giα+β

β(x) = 0.

We know that dim giα+β > 0 for all −p ≤ i ≤ q. Thus

β(x) =

(∑q
i=−p i dim giα+β

)
(∑q

i=−p dim giα+β

) α(x).



Definition

We define the Killing form of g to be the bilinear form g× g → C given

by 〈x , y〉 = tr(ad x ad y).

Proposition

(i) The Killing form is symmetric, i.e., 〈x , y〉 = 〈y , x〉 for all x , y ∈ g.

(ii) The Killing form is invariant, i.e., 〈[x , y ], z〉 = 〈x , [y , z ]〉 for all

x , y , z ∈ g.

Proposition

Let a be an ideal of g and let x , y ∈ a. Then 〈x , y〉a = 〈x , y〉g. Hence

the killing form of g restricted to a is the Killing form of a.



Proof.

We choose a basis of a and extend it to a basis of g. With respect to this

basis, ad x : g → g is represented by a matrix of the formA1 A2

0 0


since x ∈ a.

Similarly, ad y : g → g is represented by a matrix of the formB1 B2

0 0

 .



Thus ad x ad y : g → g is represented by the matrixA1B1 A1B2

0 0

 .

Hence tra(ad x ad y) = tr(A1B1) = trg(ad x ad y), and so

〈x , y〉a = 〈x , y〉g.

Proposition

If a is an ideal of g, then a⊥ is an ideal of g.

Proof.

If [x , y ] ∈ [a⊥, g] with x ∈ a⊥ and y ∈ g, then for all z ∈ a, we have

〈[x , y ], z〉 = 〈x , [y , z ]〉 = 0.

In particular, g⊥ is an ideal of g.



Definition

The Killing form of g is nondegenerate if g⊥ = 0. The Killing form of g

is identically zero if g⊥ = g.

Proposition

Let g be a Lie algebra such that g 6= 0 and g2 = g. Let h be a Cartan

subalgebra of g. Then there exists an x ∈ h such that 〈x , x〉 6= 0.

Proof.

Let g = ⊕gλ be the Cartan decomposition of g. Then

g2 = [g, g] =

[⊕
λ

gλ,
⊕

λ

gλ

]
=
∑
λ,µ

[gλ, gµ].

We have [gλ, gµ] ⊂ gλ+µ. Thus [gλ, g−λ] ⊂ h, while [gλ, gµ] is contained

in the complement of h in g if µ 6= −λ.



Since g = g2, we must have

h =
∑

λ

[gλ, g−λ]

summed over all weights λ such that −λ is also a weight.

Thus

h = [h, h] +
∑
α

[gα, g−α]

summed over all roots α such that −α is also a root.

Note that g is not nilpotent since g2 = g 6= 0. But we know that h is

nilpotent, and so h 6= g. Thus there exists at least one root β ∈ Φ.

Now β is a 1-dimensional representation of h, and so β vanishes on [h, h].

But β does not vanish on h since β 6= 0.



Using the above decomposition of h, we see there exists some root α ∈ Φ

such that −α ∈ Φ and β does not vanish on [gα, g−α]. Choose an

x ∈ [gα, g−α] such that β(x) 6= 0. Then

〈x , x〉 = tr(ad x ad x) =
∑

λ

dim gλ(λ(x))2

since ad x is represented on gλ by a matrix of the form

λ(x) ∗

·

·

·

0 λ(x)


.

For each λ, there exists an rλ,α ∈ Q such that λ(x) = rλ,αα(x).



Thus

〈x , x〉 =

(∑
λ

dim gλr2
λ,α

)
α(x)2.

Now β(x) = rβ,αα(x) and β(x) 6= 0. Thus rβ,α 6= 0 and α(x) 6= 0. It

follows that 〈x , x〉 6= 0.

Theorem

If the Killing form of g is identically zero, then g is solvable.

Proof.

We proceed by induction on dim g. If dim g = 1, then g is clearly

solvable. So assume dim g > 1.

By the contrapositive of the last proposition, we see that g 6= g2. Now g2

is an ideal of g, so the Killing form of g2 is the restriction of the Killing

form of g.



Hence the Killing form of g2 is identically zero. It follows by induction

that g2 is solvable. We also have
(
g/g2

)2
= 0, and so g/g2 is solvable.

Thus g is solvable.

Theorem (Cartan’s criterion)

A Lie algebra g is semisimple if and only if the Killing form of g is

nondegenerate.

Proof.

We prove the contrapositive. If the Killing form of g is degenerate, then

g⊥ 6= 0.

We know that g⊥ is an ideal, and thus the Killing form of g⊥ is

identically zero. This implies g⊥ is solvable by the last theorem.



Thus g has a nonzero solvable ideal, and so g is not semisimple.

Now suppose g is not semisimple. Then the solvable radical r of g is

nonzero. Consider the chain of subspaces

r = r(0) ⊃ r(1) ⊃ r(2) ⊃ · · · ⊃ r(k−1) ⊃ r(k) = 0.

Each subspace r(i) is an ideal of g since the product of two ideals is an

ideal.

Let a = r(k−1). Then a is a nonzero ideal such that a2 = 0. We choose a

basis of a and extend it to a basis of g.



Let x ∈ a, y ∈ g. With respect to our chosen basis, ad x is represented

by a matrix of the form  0 A

0 0


since a2 = 0 and a is an ideal of g, and ad y is represented by a matrix of

the form B1 B2

0 B3

 .

Thus ad x ad y is represented by the matrix 0 AB3

0 0

 .



Hence 〈x , y〉 = tr(ad x ad y) = 0. This holds for all x ∈ a, y ∈ g, and so

a ⊂ g⊥. Thus g⊥ 6= 0, and so the Killing form of g is degenerate.

From now on, we assume that g is a semisimple Lie algebra.

Proposition

If µ 6= −λ, then gλ and gµ are orthogonal with respect to the Killing

form.

Proof.

Let x ∈ gλ, y ∈ gµ. For every weight space gν , we have

ad x ad y · gν ⊂ gλ+µ+ν .



We choose a basis of g adapted to the Cartan decomposition. With

respect to such a basis, ad x ad y is represented by a block matrix of the

form 

0 ∗

·

·

·

∗ 0


since λ + µ + ν 6= ν.

It follows that 〈x , y〉 = tr(ad x ad y) = 0, and so gλ is orthogonal to gµ.



Proposition

If α is a root of g with respect to h, then −α is also a root.

Proof.

Recall that α is a root if α 6= 0 and gα 6= 0. Suppose −α is not a root.

Then since −α 6= 0, we must have g−α = 0. This implies that gα is

orthogonal to all gλ, and thus gα ⊂ g⊥.

But g is semisimple, and so g⊥ = 0 by Cartan’s criterion. Thus gα = 0,

contradicting the fact that α is a root.



Proposition

The Killing form of g remains nondegenerate on restriction to h.

Proof.

Let x ∈ h and suppose 〈x , y〉 = 0 for all y ∈ h. We also have 〈x , y〉 = 0

for all y ∈ gα where α ∈ Φ.

Thus 〈x , y〉 = 0 for all y ∈ g, and so x ∈ g⊥. But g⊥ = 0 since g is

semisimple, and so x = 0.

Theorem

The Cartan subalgebras of a semisimple Lie algebra are abelian.



Proof.

Let h be a Cartan subalgebra of g. For all x ∈ [h, h], y ∈ h, we have

〈x , y〉 = tr(ad x ad y) =
∑

λ

dim gλ λ(x)λ(y)

since ad x ad y is represented on gλ by a matrix of the form

λ(x)λ(y) ∗

·

·

·

0 λ(x)λ(y)


.

But λ is a 1-dimensional representation of h, and so λ vanishes on [h, h].

Thus λ(x) = 0.



It follows that 〈x , y〉 = 0 for all y ∈ h.

Since the Killing form of g restricted to h is nondegenerate, this implies

x = 0. Hence [h, h] = 0, and so h is abelian.

Let h∗ = Hom(h, C) be the dual space of h. We have dim h∗ = dim h.

We define a map h → h∗ using the Killing form of g. Given h ∈ h, we

define h∗ ∈ h∗ by

h∗(x) = 〈h, x〉 for all x ∈ h.

Lemma

The map h 7→ h∗ is an isomorphism of vector spaces between h and h∗.



Notice that Φ is a finite subset of h∗.

Because the map h 7→ h∗ is bijective, we know that for each α ∈ Φ, there

exists a unique element h′α ∈ h such that h′∗α (x) = α(x) for all x ∈ h,

that is,

α(x) =
〈
h′α, x

〉
for all x ∈ h.

Proposition

The vectors h′α for α ∈ Φ span h.

Proof.

Suppose the vectors h′α are contained in a proper subspace of h. Then

the annihilator of this subspace is nonzero.

Thus there exists a nonzero x ∈ h such that x∗ (h′α) = 0 for all α ∈ Φ,

that is,
〈
h′α, x

〉
= 0. Hence α(x) = 0 for all α ∈ Φ.



Let y ∈ h. Then

〈x , y〉 = tr(ad x ad y) =
∑

λ

dim gλ λ(x)λ(y) = 0

since λ(x) = 0 for all weights λ.

Thus 〈x , y〉 = 0 for all y ∈ h. Since the Killing form of g restricted to h is

nondegenerate, this implies x = 0, a contradiction.

Proposition

h′α ∈ [gα, g−α] for all α ∈ Φ.

Proof.

We know that gα is an h-module. Since all irreducible h-modules are

1-dimensional, gα contains a 1-dimensional h-submodule Ceα.

We have [x , eα] = α(x)eα for all x ∈ h.



Let y ∈ g−α. Then [eα, y ] ∈ [gα, g−α] ⊂ h. I claim that

[eα, y ] = 〈eα, y〉h′α.

We define the element

z = [eα, y ]− 〈eα, y〉h′α ∈ h.

Let x ∈ h. Then

〈x , z〉 = 〈x , [eα, y ]〉 − 〈eα, y〉
〈
x , h′α

〉
= 〈[x , eα], y〉 − 〈eα, y〉α(x)

= α(x)〈eα, y〉 − 〈eα, y〉α(x) = 0.

Thus 〈x , z〉 = 0 for all x ∈ h. Since the Killing form of g restricted to h is

nondegenerate, this implies z = 0. Hence [eα, y ] = 〈eα, y〉h′α for all

y ∈ g−α.



Now there exists a y ∈ g−α such that 〈eα, y〉 6= 0. For otherwise eα

would be orthogonal to g−α, and thus to the whole of g.

This would imply eα ∈ g⊥. But g⊥ = 0 since g is semisimple, and so

eα = 0, a contradiction.

Choosing a y ∈ g−α such that 〈eα, y〉 6= 0, we have

h′α =
1

〈eα, y〉
[eα, y ] ∈ [gα, g−α].

Proposition〈
h′α, h′α

〉
6= 0 for all α ∈ Φ.



Proof.

Suppose
〈
h′α, h′α

〉
= 0 for some α ∈ Φ. Let β be any element of Φ.

There exists an rβ,α ∈ Q such that β = rβ,αα on [gα, g−α].

Now h′α ∈ [gα, g−α]. Thus

β (h′α) = rβ,αα (h′α) ,

that is,
〈
h′β , h′α

〉
= rβ,α

〈
h′α, h′α

〉
= 0.

This holds for all β ∈ Φ. But the vectors h′α for α ∈ Φ span h, and so〈
x , h′α

〉
= 0 for all x ∈ h.

Since the Killing form of g restricted to h is nondegenerate, this implies

h′α = 0. Thus α = 0, contradicting the fact that α ∈ Φ.



Theorem

dim gα = 1 for all α ∈ Φ.

Proof.

Choose a 1-dimensional h-submodule Ceα of gα. We can find an

e−α ∈ g−α such that [eα, e−α] = h′α.

Consider the subspace m of g given by

m = Ceα ⊕ Ch′α ⊕ g−α ⊕ g−2α ⊕ · · · .

There are only finitely-many summands of m since Φ is finite. Thus there

are only finitely-many non-negative integers r such that g−rα = 0.



Observe that ad eα ·m ⊂ m because

[eα, eα] = 0,

[eα, h′α] = −α (h′α) eα,

[eα, y ] = 〈eα, y〉h′α for all y ∈ g−α.

and

ad eα · g−rα ⊂ g−(r−1)α for all r ≥ 2.

Similarly, ad e−α ·m ⊂ m because

[e−α, eα] = h′α,

[e−α, h′α] = α (h′α) e−α,

and ad eα · g−rα ⊂ g−(r+1)α for all r ≥ 1.



Now h′α = [eα, e−α], and so

ad h′α = ad eα ad e−α − ad e−α ad eα.

Thus ad h′α ·m ⊂ m.

We calculate the trace of ad h′α on m in two different ways. First, we have

trm (ad h′α) = α (h′α) + dim g−α (−α (h′α)) + dim g−2α (−2α (h′α)) + · · ·

= α (h′α) (1− dim g−α − 2 dim g−2α − · · · ).

Second, we have

trm (h′α) = trm(ad eα ad e−α)− trm(ad e−α ad eα) = 0.



Thus

α (h′α) (1− dim g−α − 2 dim g−2α − · · · ) = 0.

Now α (h′α) =
〈
h′α, h′α

〉
6= 0, and so

1− dim g−α − 2 dim g−2α − · · · = 0.

This can happen only if dim g−α = 1 and dim g−rα = 0 for all r ≥ 2.

Now α ∈ Φ if and only if −α ∈ Φ. Thus dim gα = 1 for all α ∈ Φ.

Note that while all of the root spaces gα are 1-dimensional, the space

g0 = h need not be 1-dimensional.



Proposition

If α ∈ Φ and rα ∈ Φ where r ∈ Z, then r = 1 or r = −1.

Proof.

From the above, we have dim g−rα = 0 for all r ≥ 2, that is, −rα is not

a root.

Now rα ∈ Φ if and only if −rα ∈ Φ. Thus only α and −α can be

roots.

We are now ready to examine some stronger properties of the set Φ of

roots.



Let α, β ∈ Φ be roots such that β 6= α and β 6= −α. Then β is not an

integer multiple of α.

There do, however, exist integers p ≥ 0, q ≥ 0 such that the elements

−pα + β, . . . ,−α + β, β, α + β, . . . , qα + β

all lie in Φ but −(p + 1)α + β and (q + 1)α + β do not.

The set of roots

−pα + β, . . . , qα + β

is called the α-chain of roots through β.



Proposition

Let α, β be roots such that β 6= α and β 6= −α. Let

−pα + β, . . . , β, . . . , qα + β

be the α-chain of roots through β. Then〈
h′α, h′β

〉〈
h′α, h′α

〉 = p − q.

Proof.

Consider the subspace m of g given by

m = g−pα+β ⊕ · · · ⊕ gqα+β .

Recall that h′α = [eα, e−α] ∈ [gα, g−α].



Now β is not an integer multiple of α, and so −(p + 1)α + β 6= 0 and

(q + 1)α + β 6= 0.

We have ad eα · gqα+β ⊂ g(q+1)α+β . Because (q + 1)α + β 6= 0 and

(q + 1)α + β /∈ Φ, we must have g(q+1)α+β = 0.

Thus ad eα ·m ⊂ m. By a similar argument, we have ad e−α ·m ⊂ m, and

so

ad h′α ·m = (ad eα ad e−α − ad e−α ad eα)m ⊂ m.

We calculate the trace of ad h′α on m in two different ways. We have

trm (ad h′α) =

q∑
i=−p

(iα + β) (h′α)

since dim giα+β = 1.



Second, we have

trm (ad h′α) = trm(ad eα ad e−α)− trm(ad e−α ad eα) = 0.

Thus
q∑

i=−p

(iα + β) (h′α) = 0,

that is, (
q(q + 1)

2
− p(p + 1)

2

)
α (h′α) + (p + q + 1)β (h′α) = 0.

Since p + q + 1 6= 0, this yields

(q − p)

2

〈
h′α, h′α

〉
+
〈
h′α, h′β

〉
= 0.



Hence 〈
h′α, h′β

〉〈
h′α, h′α

〉 = p − q

since
〈
h′α, h′α

〉
6= 0.

Corollary

If α ∈ Φ and ζα ∈ Φ where ζ ∈ C, then ζ = 1 or ζ = −1.

Proof.

Suppose ζ 6= ±1 and let β = ζα. Then β (h′α) = ζα (h′α), that is,

〈
h′α, h′β

〉
= ζ
〈
h′α, h′α

〉
.

From the previous proposition, this yields

2ζ = 2

〈
h′α, h′β

〉〈
h′α, h′α

〉 = p − q.



Hence 2ζ ∈ Z. If ζ ∈ Z, then ζ = ±1. Thus ζ /∈ Z. It follows that p − q

is odd.

The α-chain of roots through β is

−
(

p + q

2

)
α, . . . , β =

(
p − q

2

)
α, . . . ,

(
p + q

2

)
α.

Since p − q is odd and consecutive roots differ by α, we see that all roots

in the α-chain are odd multiples of 1
2α.

Also, p − q 6= 0, and so p and q cannot both be zero. Thus p + q 6= 0.

Because the first and last roots are negatives of one another, 1
2α must lie

in the α-chain. Thus 1
2α ∈ Φ.

But α ∈ Φ, and so 2
(

1
2α
)
∈ Φ, a contradiction.



Proposition〈
h′α, h′β

〉
∈ Q for all α, β ∈ Φ.

Proof.

We already know that
〈
h′α, h′β

〉
∈ C. We also have

2

〈
h′α, h′β

〉〈
h′α, h′α

〉 ∈ Z.

Thus
〈h′

α,h′
β〉

〈h′
α,h′

α〉
∈ Q. It is therefore sufficient to show that

〈
h′α, h′α

〉
∈ Q.

We have

〈
h′α, h′α

〉
= tr (ad h′α ad h′α) =

∑
β∈Φ

(β (h′α))
2

=
∑
β∈Φ

〈
h′α, h′β

〉2
.



Dividing by
〈
h′α, h′α

〉2
, this yields

1〈
h′α, h′α

〉 =
∑
β∈Φ

(〈
h′α, h′β

〉〈
h′α, h′α

〉)2

∈ Z.

Hence
〈
h′α, h′α

〉
∈ Q, completing the proof.


