
Solutions to Exercises in Chapter 4 of “Noncommutative
Algebra” by Benson Farb & Keith Dennis

1. Show that the following four conditions (one page 110) for two algebras to be similar are indeed
equivalent. Let S and T be finite dimensional central simple k-algebras. Then S ∼ T , i.e., S
is similar to T if the following equivalent conditions hold:

(a) If S ∼Mn(D) and T ∼Mm(E) for division rings D,E, then D ∼ E

(b) There exisits m,n such that S ⊗Mm(k) ∼ T ⊗Mn(k)

(c) There exists m,n such that Mm(S) ∼Mn(T )

(d) IfM is the unique simple S-module andN is the unique simple T -module, thenEndS(M) ∼
EndT (N)

Solution: (a) =⇒ (b): Let S ∼ Mn(D), T ∼ Mm(E). Then S ⊗Mm(k) ∼ Mmn(D) and
T ⊗Mn(k) ∼Mmn(E). So D ∼ E =⇒ (b).

(b) =⇒ (c): Follows from Lemma 4.1 (i) in the book.

(c) =⇒ (d): We first prove the following.

Proposition 1. Suppose S ∼ Mn(D) with Dn = M , the unique simple left S-module. Then
EndS(M) ∼ Dop. Similarly if N is the unique simple right S-module, then EndS(N) ' D.

Proof. Clearly, we have an injection

Dop ↪→ EndS(M)

dop 7→ φd : m 7→ m.d

To show that the map is surjective, let f ∈ EndS(M). Let {ei} denote the standard basis
of M over D (acting from the left). Let Eij denote the (i,j)-elementary matrix. Now for any

1



m = Ae1 ∈M for some A ∈ S,

f(m) = f(Ae1), for someA ∈ S
= Af(e1)

= Af(E11e1)

= AE11f(e1)

= AE11


d1
d2
...
dn



= A


d1
0
...
0

 = (Ae1)d1 = m.d1 = φd1(m)

So Dop ∼= EndS(M). The proof for simple right S-modules is similar.

Using the above claim let us prove (c) =⇒ (d). Given that Q := Mm(S) ∼ Mn(T ) for
some m,n where S ∼ Mr(D) and T ∼ Mk(∆). Then by hypothesis Mmr(D) ∼ Mnk(∆).
Let V be the unique simple Q-module. Then by the claim, EndQ(V ) ∼ Dop ∼ ∆op, yielding
EndS(M) ∼ Dop ∼ ∆op ∼ EndT (N).

(d) =⇒ (a): By the claim, Dop ∼ EndS(M) ∼ EndT (N) ∼ ∆op. So D ∼ ∆.

2. LetA = [aij] ∈Mn(k) andB = [bkl] ∈Mm(k). The Kronecker productA⊗B is the nm×nm
block matrix [Abkl]1 ≤ k, l ≤ m. Prove that the mapping

Mn(k)⊗Mm(k)→Mnm(k)

(A,B) 7→ A⊗B

induces a k-algebra isomorphism.

Solution:
First note that the map is well-defined (Easy to check). To see that it is a k-algebra morphism,
denote the i-th row of B1 by ri and the j-th column of B2 by sj. Then

A1A2 ⊗B1B2 = [A1A2risj]ij

= [A1(ri)]i[A2(sj)]j

= (A1 ⊗B1)(A2 ⊗B2)

where for ri = [ri1 ri2 · · · rim], A1(ri) = [A1ri1 A1ri2 · · ·A1rim] and for sj =


sj1
sj2
...
sjm

, A2(sj) =


A2sj1
A2sj2

...
A2sjm

. The map is injective beacuse by definition if A ⊗ B = 0 then A = 0 or B = 0.

Since the dimension of both domain and codomain equals to n2m2, the map is surjective and
hence an isomorphism.
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3. Show that the set of isomorphism classes of finite dimensional central simple algebras over a
field k actually forms a set. Estimate its cardinality.

4. (a) Show that Br() is a functor from the category of fields and field homomorphisms to the
category of abelian groups and group homomorphisms
Solution: Consider

Br : Fields −→ AbelianGroups

k  Br(k)

i : k → K  Br(i) : Br(k)→ Br(K)

where Br(i) takes a central simple algebra A over k to A ⊗k K. Note that Br(i) is a
group homomorphism becuse it takesA⊗kB to A⊗kB⊗kK ' (A⊗kK)⊗K (B⊗kK).
Clearly, Br(id) is the identity. Moreover, if k1

f−→ k2
g−→ k3 is a composition of maps then

Br(g) ◦Br(f)(A) = (A⊗k1 k2)⊗k2 k3 ' A⊗k1 k3 = Br(g ◦ f).

(b) Let i : k → K and j : k → K be homomorphism of fields and let i∗ and j∗ be the induced
maps from Br(k) to Br(K). Let F = {x ∈ k : i(x) = j(x)} and assume that K/i(F ) is
finite Galois. Prove that i∗ = j∗.
Solution: This is not true.

5. Give an example of two finite dimensional central fivision algebras over k whose tensor prod-
uct (over k) is not a division algebra.
Solution:
Let H denote the real quarternions i.e., H = R ⊕ Ri ⊕ Rj ⊕ Rk with ij = k, jk = i, ki =
j, i2 = j2 = k2 = −1. Then H is a division algebra. So is Hop. But H⊗R Hop 'M4(R) is not
a division algebra.

Digression: H ' Hop since [H] has order 2 in Br(R). The explicit isomorphism is given by

H→ H
r 7→ r

i 7→ −jop

j 7→ −rop

k 7→ −iop

It is easy to check that it is a R-algebra isomorphism.

6. (a) Prove that Br(k) = 0 for any algebraic extension of finite fields
Solution:
Recall the definition of C1-fields:
A field k is quasi-algebraically closed or C1 if for any homogeneous polynomial of de-
gree d in n > d variables, there exists a non-trivial solution.

The result follows from the following lemmas:

Lemma 2. Finite fields are C1.

Lemma 3. Finite extensions of C1-fields are C1.

Lemma 4. Algebraic extensions of C1-fields are C1.

Lemma 5. If k is a C1-field, then Br(k) = 0.
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(b) Prove that Br(k) = 0 for any field k of transcendence degree one over an algebraically
closed field.
Solution:
This follows from the previous lemma and Tsen’s theorem which states that such fields
are C1.

7. (a) Show that a k-algebra A is central simple over k if and only if there is a k-algebra B such
that A⊗k B 'Mn(k) as k-algebras for some n.
Solution:
The ”only if ” part follows by taking B = Aop. Now suppose A ⊗ B ' Mn(k) for
some B. Now if A is not simple, then there is a non-trivial two sided ideal I ⊆ A. This
yields I ⊗ B, a non-trivial two sided ideal in A ⊗ B ' Mn(k) which is simple. This is
contradiction. Threfore A is simple.
Also

Z(A)⊗k k ⊆ Z(A⊗k B) = Z(Mn(k)) = k

⇒ Z(A) ⊆ k ⊆ Z(A)

⇒ Z(A) = k

Hence A is central simple over k.

(b) LetA,A′ be central simple over k. Show that if [A] = [A′] inBr(k) and [A : k] = [A′ : k]
then A ' A′ as k-algebras
Solution:
Let A 'Mn(D) and A′ 'Mr(D) for some division algebra D over k. Then

[A : k] = [A : D][D : k] = n2[D : k] = r2[D : k] = [A′ : k]

⇒ n2 = r2

⇒ n = r

⇒ A ' A′

8. Theorem 4.4 (in the book) may be interpreted as follows. Given z ∈ Br(K/k), there is a
pair (S, i) such that z = [S] where S is central simple over k and i : K → S is a k-algebra
homomorphism whose image is a maximal commutative subalgebra of S. Suppose that (S ′, i′)
is another such pair and z = [S ′]. Prove that ther eis a k-algebra isomorphism φ : S → S ′ such
that φ ◦ i = i′.
Solution:

[S : k] = [S : i(K)][i(K) : k]

Since i(K) is a maximal subfield of S, its centralizer is itself. So by double centralizer theorem,
[S : k] = [K : k]2. Similarly, [S ′ : k] = [K : k]2. Thus [S : k] = [S ′ : k]. Also it is given that
[S] = [S ′]. Hence by Problem 7(b), there exists a k-isomorphism α : S → S ′. Now α ◦ i and
i′ are two homomorphisms from K to S ′. By Skolem-Noether, there is an inner automorphism
θ : S ′ → S ′ such that θ ◦ α ◦ i = i′. Then φ = θ ◦ α is the required k-isomorphism.

9. Let A be a central simple algebra over k with maximal commutative subalgebra K. Assume
K/k is Galois with Galois group G. Let E be the normalizer of K∗ in A∗. Find a homomor-
phism φ ofE ontoG such that kerφ = K∗. E is an example of what is called a group extension
of G by K∗.
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Solution:
Define

φ : E → G

α 7→ σα

where σα is ”conjugation by α”. Now φ is surjective by Skolem-Noether and kerφ = CA(K∗) =
K∗ since K is a maximal subfield.

10. Let A be a central simple k-algebra containing a field F . Let C(F ) be the centralizer of F in
A. Show that the following equality holds in Br(F ): [F ⊗k A] = [C(F )].

Solution:
We first prove the following proposition which is the corrected version of Proposition 1.10
from ”The Book of Involutions”.

Proposition 6. Every right module of finite type M over a central simple F -algebra A has a
natural structure of left module over E = EndA(M), so that M is an A − E bimodule. If
M 6= {0}, the algebra E is central simple over F and Brauer equivalent to A. Moreover,

deg E = rdimAM

deg A = rdimEM

Proof. Clearly M is an A − E bimodule. Suppose A = Mr(D) for some division algebra D.
Then N = Dr written as row vector is a simple right A-module. By Proposition 1 have an
isomorphism of F -algebras:

D → EndA(N)

Now M ' (Dr)s for some s. Therefore,

E = EndA(M) ' EndA((Dr)s) 'Ms(EndA(Dr)) 'Ms(D)

This proves that E is central simple over F and is Brauer equivalent to A. Moreover,

degE = s.degD = rdimAM

and

rdimEM =
rs(degD)2

s.degD
= r.degD = degA

Now F ⊗k A is a central simple algebra over F . Note that A is a right F ⊗k A-module via the
action given by a · (f ⊗ a′) = f · a · a′. Consider the map

C(F )→ EndF⊗kK(A) := B

h→ φh

where φh is multiplication to the left by h. This map is clearly injective. Moreover, by Propo-
sition 6,

degB = rdimF⊗A(A) =
dimFA

deg(F ⊗ A)
=

(degA)2

[F : k] · degA
=

degA

[F : k]
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Now by the double centralizer theorem

dimF (C(F )) =
dimk(C(F ))

[F : k]
=

(degA)2

[F : k]2

⇒ deg(C(F )) =
degA

[F : k]
= degB

So the map is surjective and [C(F )] = [B] = [F ⊗k K] by Proposition 6.

11. Let A be a central simple k-algebra. Prove the following

(a) If [A : k] = n2, then ind(A)/n and ind(A) = n iff A is a division algebra
Solution:
Let A 'Mr(D). Then

[A : k] = [A : D][D : k]

n2 = r2ind(A)2

⇒ n = r · ind(A)

⇒ ind(A)/n

Moreover ind(A) = n iff r = 1.

(b) If A′ is a central simple algebra over k such that [A′] = [A] in Br(k), then ind(A′) =
ind(A)
Solution:
This is easy to see.

(c) A posseses a splitting field of degree ind(A) over k.
Solution:
Let A ' Mr(D) where degD = ind(A) := n. Let K be a maximal subfield of D. Then
by the double centralizer theorem,

n2 = [D : k] = [K : k][C(K) : k] = [K : k]2

⇒ [K : k] = n

Since K splits D, it splits A too.

(d) If K is any splitting field of A, then ind(A)/[K : k].
Solution:
Let A ' Mr(D). Let K be a splitting field of A. Then by Theorem 4.4 in the book,
thre exists S suchthat [S] = [A] with degS = [K : k]. So ind(A) = ind(S) and
ind(S)/deg(S). So ind(A)/[K : k].

(e) ind(A) = min{[K : k] : K splits A}
Solution:
Follows from (d) and (e).

(f) For m ≥ 1, ind(A⊗m)/ind(A)
Solution:
Let K split A. Then K also splits A⊗m since

A⊗k A⊗k · · · ⊗k A⊗k K ' (A⊗k K)⊗K (A⊗k K) · · · ⊗K (A⊗k K) 'Mr(K)

Moreover by (c), A has a splitting fieldK of degree ind(A) over k which also splitsA⊗m.
By (d), ind(A⊗m)/[K : k]. But [K : k] = ind(A) so that we are done.
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12. Let A be a central simple algebra over k and let K/k be a finite extension. Prove that

(a) ind(AK)/ind(A)
Solution:
We can asssume that A is a division algebra. Since the index of a central simple algebra
divides its degree, ind(AK)/deg(AK). But deg(AK) = deg(A) = ind(A) and we are
done.

(b) ind(A)/[K : k]ind(AK)
Solution:
Let A 'Ms(D). Write DK 'Mr(D

′) for some division algebra D′. Let K ′ be a mximal
subfield of D′. Note that [D′] = [AK ]. Then K ′ splits D′ and hence AK . Moreover

[K ′ : k]2 = [D′ : K] = ind(AK)2

ind(AK) = [K ′ : K]

Now

A⊗k K ′ ' A⊗k K ⊗K K ′ 'Mt(K
′)

By the previous problem 11(d),

ind(A)/[K ′ : k]

⇒ ind(A)/[K ′ : K][K : k]

⇒ ind(A)/ind(AK)[K : k]

(c) If ind(A) and [K : k] are relatively prime, then ind(AK) = ind(A); and if A is also a
division algebra, then so is AK .
Solution:
Follows from (a) and (b).

13. Let A and B be finite dimensionalcentral simple algebras over k. Let K/k be a finite field
extension. Prove the following facts:

(a) If [A] = [B], then exp(A) = exp(B)
Solution:
This is easy to see because A⊗m splits iff D⊗m splits where D is the division algebra in
the class of A in Br(k).

(b) exp(AK)/exp(A)
Solution:
Let n = exp(A). So (A)⊗n splits. But (AK)⊗n = (A⊗k K)⊗K (A⊗k K) · · · ⊗K (A⊗k
K) ' (A)⊗n ⊗k K 'Mr(K). So exp(Ak)/exp(A).

(c) exp(A)/[K : k]exp(AK)
Solution:
Let exp(AK) = n. So (AK)⊗n splits. So (A⊗n)K splits. This implies [K : k] splits A⊗n.
By 11 (d), this implies ind(A⊗n)/[K : k]. Since exp()/ind(), exp(A⊗n)/[K : k] i.e.,
(A⊗n)[K:k] splits. Therefore exp(A)/n[K : k].

(d) If ind(A) is relatively prime to [K : k], then exp(AK) = exp(A).
Solution:
ind(A) relatively prime to [K : k] ⇔ exp(A) relatively prime to [K : k] since ind(A)
and exp(A) have same prime factors. Now the result follows from (b) and (c).
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(e) exp(A⊗B) divides the lcm of exp(A) and exp(B).
Solution:
Let n denote the lcm. Then (A ⊗ B)⊗n ' A⊗n ⊗ B⊗n which is split. This means that
exp(A⊗B)/n.

(f) exp(A⊗m) = exp(A)/n where n is the gcd of m and exp(A).
Solution:
Let exp(A⊗m) = r. So (A⊗m)r = A⊗mr splits. This means that exp(A)/mr. Here r is
the least positive integer such that exp(A)/mr. So r = exp(A)

gcd(m,exp(A))
.

(g) If ind(A) and ind(B) are relatively prime, then ind(A ⊗ B) = ind(A) · ind(B) and
exp(A⊗B) = exp(A) · exp(B).
Solution:
WLOG we can assume that A and B are division algebras. By Lemma 4.18 in the book,
A⊗B is a division algebra since their indices are coprime. Thus ,ind(A⊗B) = deg(A⊗
B) = deg(A)deg(B) = ind(A)ind(B).
By (e),

exp(A⊗B)/(exp(A)exp(B)) (1)

Let m = exp(A⊗ B). WLOG assume A and B are division algebras. Then[A⊗ B]m =
[A]m[B]m = 1. By (f), ind(A⊗m)/exp(A) and ind(B⊗m)/exp(B). So ind(A⊗m) and
ind(B⊗m) are relatively prime as well since exp() and ind() have same prime factors.
Now let [D] = [A]n and [E] = [B]m where D,E are division algebras. Then from the
above equation,

[A]m[B]m = 1

[D][E] = 1

[D ⊗ E] = 1

But ind(D) and ind(E) arerelatively prime. So by Lemma 4.8 in the book, D ⊗ E is
division algebra over k. But that is possible only when D = E = k. So A⊗m and
B⊗m are split i.e., exp(A)/m and exp(B)/m. Since exp(A) and exp(B) are coprime,
exp(A)exp(B)/m. This together with (3) finishes the proof.

14. Let A be a finite dimensional central simple algebraover k with ind(A) = pjn, p prime, j ≥ 1
and p - n. Prove that there is a field extension K/k whose dimension is relatively prime to p,
for which ind(AK) = pj .
Solution:
WLOG we can assume A is a division algebra. Then by Theorem 4.19, A ' D1 ⊗k D2 ⊗k
· · · ⊗k Dr where ind(D1) = pj and ind(Dt) = qitt where qt are distinct primes and p 6= qt
for 2 ≤ t ≤ r. Now each Dt, t ≥ 2 contains a maximal subfieldKt of degree ind(Dt) by the
Centralizer theorem. Moreover Kt splits Dt. Let K be the composite of the fields in Kt in k.
Then [K : k] = n =

∏r
t=2 q

it
t . So p - [K : k]. Moreover, A ⊗ k = (D1 ⊗k K) ⊗K (D2 ⊗k

K)⊗k · · ·⊗k (Dr⊗kK) = Ms(D1⊗kK). But ind(D1) and [K : k] are coprime. So D1⊗kK
is division algebra by 12 (c). Therefore, ind(AK) = deg(D1 ⊗k K) = deg(D1) = pj .

Generalized Quarternion Algebras
Let k be a field of characteristic not equal to 2. For a, bıK∗, let (a,b

k
) denote the vector space

of dimension 4 over k having the elements 1, i, j, k as a basis. Defining i2 = a, j2 = b, ij =
−ji = k. This makes this into a k-algebra. Note that k2 = −ab, ki = −ik = −aj and
jk = −kj = −bi. The algebra (a,b

k
) is called the generalized quarternion algebra.
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15. (a) Show that every 4-dimensional central simple algebra over k is isomorphic to (a,b
k

), for
some a, b ∈ k∗.
Solution:
Let A be a 4-dimensional central simple algerba over k. Then A is either M2(k) or a
division algebra. By Problem 16, M2(k) ' (1,1

k
). So assume that A is a division algebra.

Note that A contains a maximal subfield K. Then by the double centralizer theorem, K
is a quadratic extension of k. Let K = k(

√
α), α ∈ k/(k∗)2. Let σ be the non-trivial

automorphism in Gal(K/k). Then by Skolem-Noether, there exists y ∈ A such that
σ(t) = yty−1∀t ∈ K. Since σ2 = 1, conjegation by y2 is trivial on K . Since K is
maximal, this implies y2 ∈ K. Also σ(y2) = y2 ⇒ y2 ∈ k∗. Let y2 = β ∈ k∗ and
x2 = α ∈ k∗. So the k-subalgebra in A generated by x and y is given by the following
relations

x2 = α, y2 = β

σ(x) = yxy−1 ⇒ −x = yxy−1 ⇒ xy = −yx

The elements {1, x, y, xy} forms a basis for A and A ' (α,β
k

).

(b) Using this description of the central simple algebra , explicitly give its factor sets.
Solution:
If A ' M2(k), its factor sets are {a1,σ = aσ,1 = a1,1 = aσ,σ = 1}. Now assume that A
is a division algebra. Then from the proof of the previous prolem we note that A ' (a,b

k
)

where i2 = a, j2 = b, k = ij = −ji. Moreover, a /∈ (k∗)2. Then K = k[i] is a mximal
subfield of A. Let σ ∈ Gal(K/k) be the non-trivial element. Then σ(c+ id) = c− id =
j(c + id)j−1. So we can pick xσ = j and x1 = 1. The the relation x1xσ = a1,σxσ,
xσx1 = aσ,1xσ and xσxσ = aσ,σx1, yields the following factor set

{a1,1 = aσ,1 = a1,σ = 1, aσ,σ = b}

16. Show that (1,1
k

) 'M2(k)
Solution:
Since (1 + i)(1− i) = 1− 1 = 0, the ring has elements that do not have inverses. So it is not a
division algebra and hence split.

17. Show that (a,b
k

) ' ( b,a
k

)
Solution:
The isomorphism is given by

(
a, b

k
)→ (

b, a

k
)

1 7→ 1

i 7→ −j
j 7→ −i
k 7→ −k

18. Show that (a,b
k

) ' (ax
2,by2

k
) for any x, y ∈ k∗

Solution:
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The isomorphism is given by

(
a, b

k
)→ (

ax2, by2

k
)

1 7→ 1

i 7→ xi

j 7→ yj

k 7→ xyk

19. Show that (a,b
k

)⊗k K ' (a,b
K

) for k ⊆ K.
Solution:
As a K-vector space (a,b

K
) has basis {1 ⊗ 1, i ⊗ 1, j ⊗ 1, k ⊗ 1}. The explicit isomorphism is

given by sending this ordered basis to the basis {1, i, j, k} of (a,b
k

).

20. Show that (a,b
k

) is a central simple algebra.
Solution:
Let us first compute its center Z. Suppose z = c+di+ ej+ fk ∈ Z. Then the relation iz = zi
yields e = f = 0, so z = c + di. Using the relation jz = zj, we get d = 0, so that z ∈ k.
Hence its center is k.
To show that it is simple, it suffices to show that (a,b

k
)⊗k k is simple. Now

(
a, b

k
)⊗k k ' (

a, b

k
) by Problem 19

' (
1.(
√
a)2, 1.(

√
b)2

k
)

' (
1, 1

k
) by Problem 18

'M2(k) by Problem 16

which is simple.

21. Show that a,1−a
k
'M2(k).

Solution:
Consider z = (1 + i+ j). Then z · (1− i− j) = 0, the algebra is split.

22. Show that (1,b
k

) ' (a,−a
k

) 'M2(k).
Solution: In (1,b

k
), we have (j + k)(−j − k) = 0 and in (a,−a

k
), (i + j)(−i − j) = 0. So they

are isomorphic to M2(k).

23. Show that A ' (a,b
k

) is isomorphic to its opposite algebra Aop.
Solution: This is because exp(A) is either 1 or 2, so that [A]2 = 1 in Br(k). Hence A ' Aop.
The explicit isomorphism is given by

(
a, b

k
)→ (

a, b

k
)op

1 7→ 1op

i 7→ −iop

j 7→ −jop

k 7→ −kop
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24. Show that (a,b
k

) ' M2(k) iff a ∈ NE/k(z), for some z ∈ E = k(
√
b) where NE/k(z) is the

norm of z.
Solution:
⇐: Let a = u2 − bv2 = N(u+

√
bv). Then (u+ i+ jv)(u− i− jv) = u2 − a− bv2 = 0. So

(a,b
k

) 'M2(k)

underline⇒: (a,b
k

) ' M2(k). Then there exists 0 6= z ∈ (a,b
k

) such that z is not invertble.
Consider zz where z = u− iv− jw− kx is the conjugate of z = u+ iv+ jw+ kx. Then note
that N(z) = zz = u2 − av2 − bw2 + ab = 0, since otherwise z will have an inverse given by
zN(z). So we have

u2 − av2 − bw2 + ab = 0

u2 − bw2 = av2 − ab
u2 − bw2 = a(v2 − b)

Now if b = v2, then k(
√
b) = k and a = N(a) as a ∈ k(

√
b) = k. So assume b 6= v2. Then

a =
u2 − bw2

v2 − b

= N(
u+
√
bw

v +
√
b

)

25. Show that (a,b
k

) is a division algebra if and inly if b is not the norm of an element of k(
√
a).

Solution:
This follows from Problem 17 and Problem 24.

26. Show that (a,b
k

)⊗k (a,c
k

) ' (a,bc
k

)⊗k ( c,−a
2c

k
) ' (a,bc

k
)⊗k M2(k)

Solutions:
The last isomorphism is clear from Problem 18 and 22. Let A = (a,b

k
)⊗k (a,c

k
) and let

I = i⊗ 1

J = j ⊗ j′

K = IJ = k ⊗ j′

I ′ = 1⊗ j′

J ′ = i⊗ k′

K ′ = I ′J ′ = −c(i⊗ i′)

Consider the k-linear map

(
a, b

k
)⊗k (

a, c

k
)→ (

a, bc

k
)⊗k (

c,−a2c
k

)

I 7→ i⊗ 1

J 7→ j ⊗ 1

K 7→ k ⊗ 1

I ′ 7→ 1⊗ i
J ′ 7→ 1⊗ j
K ′ 7→ 1⊗ k

11



It is easy to check that this map extends to k-algebra morphism. It is surjective since it maps
onto the basis of the codomain. It is injective since the domain is simple. Hence it is an
isomorphism.

27. Prove that an element of Br(k) has the form [(a,b
k

)] for some a, b ∈ k if and only if it is in
Br(K/k) for some separable quadratic extension K/k.
Solution:
⇒: Let K = k(

√
b). Then (a,b

k
)⊗k K is split by Problem 18 and 22. Hence it is in Br(K/k).

⇐: Suppose [A] ∈ Br(K/k), i.e., K splits A where [K : k] = 2. Then by Theorem 4.4, there
exists a central simple algebra of degree 2 (i.e., dimension 4) in the class of A which contains
K as a maximal subfield. But every central simple algebra of dimension 4 is isomorphic to
(a,b
k

) for some a, b by Problem15(a). Hence [A] = [(a,b
k

)].

28. Power Norm Residue Symbols:

(Reference: Milnor’s Algebraic K-theory, Chapter 15, “Power Norm Residue Symbol” and
Grayson’s “On K-theory of fields”) Let F be a field containing a primitive nth root of unity ω.
For a, b ∈ F ∗, let Aw(a, b) be the F -algebra of dimension n2 which is generated by elements
x and y which satisfy xn = a, yn = b and yx = ωxy. A basis for Aω(a, b) consists of
{xiyj : 0 ≤ i, j ≤ n}. Check the following:

(a) Aω(a, b) is central simple over F and thus gives a function

aω : F ∗ × F ∗ → Br(F )

Solution:
Let

∑
cijx

iyj be in the center. Then (
∑
cijx

iyj)x = x(
∑
cijx

iyj) if and only if cij =
0∀j ≥ 1. Similarly, (

∑
cijx

iyj)y = y(
∑
cijx

iyj) if and only if cij = 0∀i ≥ 1. Hence
the center is F . Now let I be a non-zero two sided ideal in Aω(a, b) and let 0 6= α =∑
cijx

iyj ∈ I . Suppose ckl 6= 0. Then x−kαy−l ∈ I has a non-zero constant term. So
WLOG we can assume that c00 6= 0 in α. Let

Tx, Ty : Aω(a, b)→ Aω(a, b)

Tx : z 7→ xzx−1

Ty : z 7→ yzy−1

Then Tx(xiyj) = ω−jxiyj and Ty(xiyj) = ωixiyj . So β = (Tx − ω)(Tx − ω2) · · · (Tx −
ωn−1)α has no xiyj term where j ≥ 1. Hence WLOG assume that α has no term involving
y. now for such an α, γ = (Ty−ω)(Ty−ω2) · · · (Ty−ωn−1)α = (1−ω)(1−ω2) · · · (1−
ωn−1)c00 = nc00 6= 0 (Since F has primitive nth root of unity, n 6= 0 in F ).

(b) The function

aω : F ∗ × F ∗ → Br(F )

(a, b) 7→ Aω(a, b)

satisfies the following:

i. aω(a, bc) = aω(a, b)aω(a, c)
Solution:
We will first prove the following lemma:
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Lemma 7. Let A be a central simple algebra of dimension n2 over F and let x ∈ A
be an element which satisfies a polynomial equation over F of the form

f(x) = xn + φ1x
n−1 + · · ·+ φn1 = 0

but no equation of smaller degree. If f(x) splits into distinct linear factors over F ,
then A is siomorphic to the matrix algebra Mn(F ).

Proof. The subalgebra of A spanned by powers of x is clearly isomorphic to the
quotient ring F [x]/(f(x)). By the Chinese Remainder theorem, F [x]/(f(x)) splits
as a Cartesian product of n copies of F . Hence it contains mutually orthogonal
idempotents e1, e2, · · · , en where

eiej = 0 iff i 6= j

e2i = ei
n∑
i=1

ei = 1

Therefore A splits as a direct sum

A ' e1A⊕ e2A⊕ · · · ⊕ enA

of right ideals. Since A ' Mr(D) for some division algebra D, every simple right
ideal in A is given by a row vector in the matrix representation of A with the rest of
the rows zero. So A decomposes as direct sum of r simple right ideals. Thus n = r
and hence degD = 1⇒ D = F . Therefore A 'Mn(F ).

Using this lemma we proceed as follows. Consider Aω(a, b)⊗F Aω(a, c). Let

X ′ = x⊗ 1

Y ′ = y ⊗ 1

⇒ Y ′X ′ = yx⊗ 1 = ωxy ⊗ 1 = ωX ′Y ′

X = 1⊗ x
Y = 1⊗ y

⇒ Y X = 1⊗ yx = ω(1⊗ xy) = ωXY

⇒ X ′n = a, Y ′n = b,Xn = a, Y n = c

Moreover, X ′X = XX ′, X ′Y = Y X ′, XY ′ = Y ′X, Y Y ′ = Y ′Y

Let B′ be the subalgebra generated by X ′ and Y ′Y . Let B′′ be the subalgebra gener-
ated by X ′−1X and Y . Then the generators of B′ and B′′ commute. We then have a
map

Φ : B′ ⊗B′′ → Aω(a, b)⊗ Aω(a, c)

X ′ ⊗ 1 7→ X ′

Y ′Y ⊗ 1 7→ Y ′Y

1⊗X ′−1X 7→ X ′−1X

1⊗ Y 7→ Y

Note that B′ ' Aω(a, bc) and B′′ ' Aω(1, c). So B′ ⊗F B′′ is simple and hence Φ is
injective. By dimension count, it is surjective. So Φ is an isomorphism.

⇒ Aω(a, b)⊗ Aω(a, c) ' Aω(a, bc)⊗ Aω(a, c)

' Aω(a, bc)⊗Mn(F )

⇒ aω(a, b)⊗ aω(a, c) ' aω(a, bc) in Br(F)
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Remark: By observing that Aω−1(a, b) ' Aω(b, a), we can also show that aω(a, b)⊗
aω(c, b) ' aω(ac, b) in Br(F).

ii. aω(a, b) = aω(b, a)−1

Solution:
First we prove the following lemma.
Lemma 8. Let ξ = ωi where i is relatively prime to n (so that ξ is another primitive
n-th root of unity), then

aξ(a, b)
i = aω(a, b)

Proof. The isomorphism is given by

Aωi(a
i, b)→ Aω(a, b)

x 7→ xi

y 7→ y

Since aξ(ai, b) = aξ(a, b)
i by (ii), we have aω(a, b) = aξ(a, b)

i = aωi(a, b)
i. Now

aω−1(b, a)−1 = aω(b, a)

aω(a, b) = aω−1(b, a) = aω(b, a)−1

iii. aω(a, 1− a) = 1 (Steinberg identity)
Solution:
We will first prove the following lemma:
Lemma 9. Let x, y be arbitrary elements in a ring satisfying yx = cxy where c is in
the center, then

(x+ y)n =
n∑
i=0

bni (c)xiyn−i

where

bni (c) = cibn−1i (c) + bn−1i−1 (c)

Moreover,

bni (c) =
fn(c)

fi(c)fn−i(c)
where

f0(c) = 1, fn(c) = (c− 1)(c2 − 1) · · · (cn − 1)

Proof. By induction on n. Clearly true for n = 1. Assume that the formNow

(x+ y)n = (x+ y)(x+ y)n−1

= (x+ y)(
n−1∑
i=0

bn−1i (c)xiyn−1−i)

So the coefficient of xiyn−i is cibn−1i (c) + bn−1i−1 (c). Hence

bni (c) = cibn−1i (c) + bn−1i−1 (c)

= ci
fn−1(c)

fi(c)fn−1−i(c)
+

fn−1(c)

fi−1(c)fn−i(c)

=
fn(c)

fi(c)fn−i(c)
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Now I will prove that aω(a, b) = 1 whenever a + b = 1. ConsiderAω(a, b) where
a+ b = 1. Then

(x+ y)n = xn + yn by Lemma 9 since bni (ω) = 0 ∀i
= a+ b = 1

Since x+y satisfies the polynomial zn = 1 , that splits completely in F (as F contains
primitive n-th root of unity) and no other polynomial of smaller degree over F , we
conclude by Lemma 7 that Aω(a, b) 'Mn(k) i.e.,aω(a, b) = 1.

iv. aω(a,−a) = 1
Solution:
Consider Aω(a,−a) generated by x, y subjected to xn = a, yn = −a, yx = ωxy
where ω is a primitive n-th root of unity. So

x−1y = ωyx−1.

Now

yx−1 = yx−1yx−1 · · · yx−1

= (ωω2 · · ·ωn−1)yn(x−1)n

= (−1)n+1(−a)(a−1)

= (−1)n

So the element yx−1 satisfies a polynomial of degree n over F that splits com-
pletely over F and no other polynomial of smaller degree. Therefore by Lemma
7, aω(a,−a) = 1.

v. aω(a, b)n = 1
Solution:
First observe that aω(a, b)n = aω(a, bn) by (i). Now the result follows from this and
Lemma 7.

vi. Further, aω = 1 iff a is a norm from F ( n
√
b).

Solution:
Let K := F ( n

√
b) ' F [y]/(yn − b) ⊂ Aω(a, b). Suppose a = NK/F (z) for some

z ∈ K. Consider the map

Φ : Aω(1, b)→ Aω(a, b)

x 7→ z−1x

y 7→ y

This extends to an F -algebra morphism because (z−1x)n = 1
NK/F (z)

xn = 1. and
y(z−1x) = z−1yx = z−1ωxy = ω(z−1x)y. The map Φ obviously has an inverse. So
it is an isomorphism. This gives aω(a, b) = aω(1, b) = 1.
The proof of the converse follows along the one in Milnor’s book on ”Algebraic K-
theory”, Chapter 15. Sippose Aω(a, b) ' Mn(F ). Then, Aω(a, b) ' HomF (V, V )
for some n-dimensional vector psace V over F .Thus the genrators x, y of Aω(a, b)
correspond to linear transformations X and Y of V . The minimal polynomial yn− b
of Y has degree n. Hence we can choose a basis v1, v2, · · · , vn for V so as to put Y
in ”companion matrix” normal form. In other words,

Y (Vi) = Vi+1 ∀i < n, Y (vn) = bV1
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(So the rational canonical form of Y has one block). Consider the F - linear transfor-
mation

HomF (V, V )→ HomF (V, V )

z 7→ TY (Z) = Y ZY −1

The element Z defined by

Z(Vi) = ωiVi

is clearly an eigen vector of TY with eigen vector ω−1. Since the ω−1 eigen space is
spanned by the elements X−1, X−1Y, · · · , X−1Y n−1, it follows that we can write

Z = X−1f(Y )

for some polynomial f . Now

Zn(Vi) = (ωi)nVi = Vi ∀i

So Zn = I . This yields,

X−1f(Y )X−1f(Y ) · · ·X−1f(Y ) = f(ωY )f(ω2Y ) · · · f(ωnY )X−n = I

⇒
n∏
i=1

f(ωiY ) = Xn = aI

Now consider the extension field F (η) where ηn = b. Mapping Y to η, proves that

n∏
i=1

f(ωiη) = a

If F (η)/F has degree n, then clearly this product is the norm of f(η). If F (η)/F has
degree d,

a =
d∏
i=1

σi(f(ωη)f(ω2η) · · · f(ωn/dη)) where σi(η) = (ωn/d)iη

a = N(f(ωη)f(ω2η) · · · f(ωn/dη)).

29. An involution of k-algebra A is a k-module automorphism φ : A → A such that φ(xy) =
φ(y)φ(x) and φ2(x) = x ∀x, y ∈ A.

(a) Show that if there is an involution of A, then Aop ' A.
Solution:
The isomorphism is given by

A→ Aop

a 7→ φ(a)op

ab 7→ φ(ab)op = (φ(b)φ(a))op = φ(a)opφ(b)op

(b) Find involutions of the k-algebrasMn(k) and (a,b
k

), thus concluding thatMn(k) 'Mn(k)op

and thus (a,b
k

) ' (a,b
k

)op.
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Solution:
The involution on Mn(k) is given by

φ : Mn(k)→Mn(k)

A 7→ AT

The involution on (a,b
k

) is given by

φ : (
a, b

k
)→ (

a, b

k
)

i 7→ −i
j 7→ −j
k 7→ −k

(c) Let A be a finite dimensional central simple k-algebra. Prove that if there is an involution
φ of A, then [A]2 = 1 in Br(k). Deduce that [A]2 = 1 for every quarternion algebra.
Solution:
From (a), if there exists an involution on A, then A ' Aop. But [Aop] = [A]−1 in Br(k).
The rest follows.

30. (a) Let k ⊆ K be a finite separable field extension and let Lbe a splitting field for K relative
to k (i.e., any irreducible polynomial in k[x] which has a root in K splits completely in
L). For example, L could be an algebraic closure of k, or if K/k is Galois, then L could
be K. Let σ1, σ2 · · ·σn be the distince k-algebra maps form K to L and let σ : K → Ln

be the maps with components σ1, · · ·σn. Let σL : KL → Ln be the unique L-algebra map
extending σ.

σL : K ⊗k L→ Ln

x⊗ a 7→ aσ(x)

Prove that σL is an isomorphism. Thus the k-algebra K “splits completely” when the
scalars are extended to L.
Solution:
Since K/k is separable, by primitve element theorem, there exists α ∈ K such that
K ' k(α). Then K ' k[x]/f(x), where f9x) is the minimal polynomial of α. Note that
if α = α1, α2, · · · , αn are the distinct roots of f(x) and since L contains all the roots, then
the distinct embeddings σiisgivenbyσi(α) = αi ∀i = 1, · · · , n. In particular, the number
n of distinct embeddings of K in L is equal to the degree of f(x) which is [K : k]. It is
now clear that σL is an isomorphism. In fact, it is given by the following composition of
isomorphisms

K ⊗k L
∼=−→ k[x]/f(x)⊗k L

∼=−→ L[x]/f(x)
∼=−→ ⊕ni=1L[x]/(x− αi)

∼=−→ ⊕ni=1L

t⊗ a 7→ (
∑
i

cix
i)⊗ a 7→

∑
i

acix
i 7→ (

∑
i

aciα
i
1,
∑
i

aciα
i
2, · · · ,

∑
i

aciα
i
n−1)

= (aσ1(t), aσ2(t), · · · , aσn(t))

= σL(t⊗ a)

(b) Let K and L be as in (a). Show that if D is a central simple k-algebra with maximal
subfield K, then L splits D.
Solution:
This is clear since a maximal subfield of D splits D and D ⊗k L ' D ⊗k K ⊗K L.
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(c) If L spits D and if K is a maximal separable subfield of D, does L split K relative to k
i.e., is L⊗k K ' Ln where n = [K : k].
Solution:
No. Let K/k be an extension of degree n ≥ 2. Then from Theorem 4.4 from the book,
Mn(k) contains K as a maximal subfield. Now take D = Mn(k) which is already split.
Now let L = k. Then L⊗k K ' k ⊗k K ' K 6' Ln.

31. Another Proof that Br(K/k) ' H2(Gal(K/k), K∗):
Let K/k be a Galos extension with Galois grop G. The fact that Br(K/k) ' H2(G,K∗) boils
down to the fact that for factor sets a and b, [(K,G, a)][(K,G, b)] = [(K,G, ab)]. The roof (of
chase) given in the text exhibits a ”magic module” on which both (K,G, a) ⊗k (K,G, b) and
(K,G, ab) act. A more direct approach is to choose a basis for the first two algebras which give
cocycles a and b respectively and then try to find a corresponding basis for their tensor product.
Their tensor product is not unfortunately, (K,G, ab), but rather is matrices over this ring. Hence
we must find an appropriate subring of the matrix ringMn((K,G, ab)) ' (K,G, ab)⊗kMn(k)
which is isomorphic to (K,G, ab). This is where Exercise 30 comes in: we now want to list
explicitly the idempotents (and their properties) from that exercise. Complete the following
outline, which gives the ”classical” proof that Br(K/k) ' H2(G,K∗).

(a) Prove that it if A is a central simple algebra over k and if e 6= 0 is an idempotent element
in A, then [A] = [eAe] in Br(k).
Solution:
Let A ' Mn(D) . Since e is idempotent, e is diagonalizable with 1’s and 0’s along the
diagonal. So there exists an invertible matrix P ∈ A such that PeP−1 is diagonal with
1’s and 0’s along the diagonal. After conjugating with a permutation matrix, we assume
that

PeP−1 =



1
1

. . .
1

0
. . .

0


with r 1’s along the diagonal Now note that as k-algebras, eAe ' PeAeP−1. The explicit
isomorphism is given by sending eae to PeaeP−1 ∀a ∈ A (It is easy to check that this
map is infact a k-algebra isomorphism). So we get

eAe = PeAeP−1 = (PeP−1)PAP−1(PeP−1)

=



D D · · · D 0 0 · · · 0
D D · · · D 0 0 · · · 0
...

...
D D · · · D 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
0 0 · · · 0 0 0 · · · 0


'Mr(D)

Thus [A] = [D] = [eAe] in Br(k).
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(b) Prove that

K ⊗k K ' ⊕σ∈Geσ(K ⊗k 1) = ⊕σ∈Geσ(1⊗k K)

where eσ are orthogonal idempotents such that eσ(z ⊗ 1) = eσ(1⊗ σ(z)) ∀z ∈ K.
Solution:
Since K/k is separable, K = k(a) for some a by primitive element theorem. Let p(x) =
xn + αn−1x

n−1 + · · · + α0 be the minimal polynomial of a over k. Now since K/k is
Galois,

K ⊗k K ' K [x] /p (x) = K [x] / (x− c1) . . . (x− cn) '
n⊕
i=1

K

For σ ∈ G, let

bσ,m = am ⊗ 1 + am−1 ⊗ σ (a) + . . .+ 1⊗ σ (a)m .

Now
{

1, σ (a) , . . . , σ (a)m−1
}

is linearly independent over k for each fixed σ, where
0 ≤ m ≤ n− 1 since p(x) is the minimal polynomial for σ(a).
Claim: {bσ,0, bσ,1 · · · bσ,n−1} is independent over k in K ⊗k K.

Proof. Suppose α0bσ,0 + α1bσ,1 + ... + αn−1bσ,n−1 = 0 for some α0,α1, . . . αn−1 ∈ k.
Then, (

an−1 ⊗ 1
)

[1⊗ αn−1] +
(
an−2 ⊗ 1

)
[1⊗ (αn−2 + αn−1σ (α))] + . . .

. . .+ (a⊗ 1)
(
1⊗

[
α1 + α2σ (a) + . . .+ αn−1σ (a)n−2

])
+ (1⊗ 1)

(
1⊗

[
α0 + α1σ (a) + . . .+ αn−1σ (a)n−1

])
= 0

But S = {ai ⊗ 1 : 1 ≤ i ≤ n − 1} form a basis over1 ⊗ k. So S islinearly independent.
Hence we get

α0 + α1σ (a) + α2σ (a)2 + . . .+ αn−1σ (a)n−1 = 0

But {σ(a) : 1 ≤ i ≤ n− 1} is linearly independent. This implies α0, α1, · · · , αn−1 = 0.
Hence {bσ,m : 1 ≤ m ≤ n− 1} is linearly independent over k in K ⊗k K.

Now,

(a⊗ 1− 1⊗ σ (a)) bσ,m = am+1 ⊗ 1− 1⊗ σ (a)m+1

So,

(a⊗ 1− 1⊗ σ (a)) (bσ,n−1 + αn−1bσ,n−2 + . . .+ α1bσ,0)

= (p (a)⊗ 1− α0 ⊗ 1)− (1⊗ p (σ (a))− 1⊗ α0) = 0

Since {bσ,m : 1 ≤ m ≤ n−1} is linearly independent, bσ,n−1+αn−1bσ,n−2+. . .+α1bσ,0 6=
0. Therefore tσ = a ⊗ 1 − 1 ⊗ σ(a) is a non-zero zero-divisor in K ⊗K. Consider the
following isomorphism

φ : K ⊗k K
'−→

n⊕
i=1

K
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Let ej = φ−1(rj) ∀σ ∈ G, where rj = (0, 0, · · · , 1, · · · , 0) ∈ ⊕τ∈GK is the vector with
1 at j-th position and zero everywhere else. Then ej is a non-trivial minimal idempotent
in K ⊗ K (An idempotent e is minimal if whenever e = e1 + e2 for some commuting
idempotents e1 and e2, then e = e1 or e = e2). Now since tσ is a zero divisor in K ⊗K,
there exists a minimal idempotent eσ ∈ K ⊗K ∀σ ∈ G such that

eσtσ = 0

⇒eσ(a⊗ 1− 1⊗ σ(a)) = 0

⇒eσ(a⊗ 1) = eσ(1⊗ σ(a))

Since {1, a, a2, · · · an−1} form a basis for K/k, for any z =
∑n−1

i=0 cia
i ∈ K, we have

eσ (z ⊗ 1) = eσ
[(
c0 + c1a+ c2a

2 + . . . cn−1a
n−1)⊗ 1

]
=

n−1∑
i=0

cieσ (ai⊗ 1)

=
∑

cieσ (a⊗ 1)i

=
∑

ci [eσ (a⊗ 1)]i

=
∑

cieσ (1⊗ σ (a))i

=
∑

cieσ

(
1⊗ σ (a)i

)
= eσ

[
1⊗

(∑
ciσ (a)i

)]
= eσ (1⊗ σ (z)) (2)

Now I claim that eσ 6= eτ if σ 6= τ . Suppose not. Then eσ = eτ for some σ 6= τ . Then
since eσ(a⊗ 1) = eσ(1⊗ σ(a)) and eτ (a⊗ 1) = eτ (1⊗ τ(a)), we get

eσ[1⊗ (σ(a)− τ(a))] = 0

But s = σ(a) − τ(a) 6= 0 and hence 1 ⊗ s is invertible. This implies eσ = 0, which is
contadiction. Thus we have shown that eσ 6= eτ if σ 6= τ ∀σ, τ ∈ G.
Let S = {eσ : σ ∈ G}. Then |S| = |G| = n. But K ⊗ K ' ⊕ni=1K has exactly n
nontrivial minimal idempotents given by the coordinate vectors (0, 0, · · · , 1, 0, · · · 0). So
we conclude that if σ 6= τ , eσeτ = 0. Hence S is a set of orthogonal idempotents such
that

∑
σ∈G eσ = 1. This yields

K ⊗K = (
∑
σ∈G

eσ)(K ⊗K)

=
∑
σ∈G

eσ(K ⊗K)

'
⊕
σ∈G

eσ(K ⊗ 1)

'
⊕
σ∈G

eσ(1⊗K) (by (2))

(c) Use parts (a) and (b) to prove that for factor sets a and b,

(K,G, a)⊗k (K,G, b) ' (K,G, ab)⊗k Mn(k)
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Solution:
Let R = (K,G, a) ⊗k (K,G, b). Since R ⊇ K ⊗ K, part (b) gives eσ ∈ R as above.
Let e = e1. Choose a basis {xσ}σ∈G and {yσ}σ∈G for (K,G, a) and (K,G, b) which give
cocycles a and b respectively.

Lemma 10. For every τ ∈ G, we have

(1⊗ yτ )e(1⊗ y−1τ ) = eτ

(x−1τ ⊗ 1)e(xτ ⊗ 1) = eτ

Proof. First note that (1 ⊗ yτ )e(1 ⊗ y−1τ ) is a nontrivial minimal idempotent since e is.
Since K ⊗k K has exactly n nontrivial minimal idempotents given by {eσ}σ∈G, (1 ⊗
yτ )e(1 ⊗ y−1τ ) must be one of them. Now note that eσ is the unique minimal idempotent
such that

eσ[(a⊗ 1)− (1⊗ σ(a))] = 0

for if eτ [(a⊗ 1)− (1⊗ σ(a))] = 0, then

eτ (1⊗ τ (a)) = eτ (a⊗ 1) = eτ (1⊗ σ (a))

⇒ eτ (1⊗ (τ − σ) (a)) = 0

If τ 6= σ, them τ(a) − σ(s) is invertible which yields eτ = 0, a contradiction. Hence it
suffices to show that

(1⊗ yτ )e(1⊗ y−1τ )(a⊗ 1− 1⊗ τ(a)) = 0

Write e =
∑n

i=1 ai ⊗ bi. Then

(1⊗ yτ )e(1⊗ y−1τ ) =
∑

ai ⊗ τ(bi)(1⊗ yτ )(1⊗ y−1τ )

=
∑

ai ⊗ τ(bi)

Therefore

(1⊗ yτ )e(1⊗ y−1τ )(a⊗ 1− 1⊗ τ(a) = [
∑

ai ⊗ τ(bi)][a⊗ 1− 1⊗ τ(a)]

= φτ (e(a⊗ 1− 1⊗ a)) = φτ (0) = 0

where φτ : K ⊗k K → K ⊗k K is the k- algebra homomorphism given by φτ (a ⊗ b) =
a⊗ τ(b). This proves (1⊗ yτ )e(1⊗ y−1τ ) = eτ . The proof for (x−1τ ⊗ 1)e(xτ ⊗ 1) = eτ
is similar.

Let wσ = xσ ⊗ yσ. Now

wσe = (xσ ⊗ 1) (1⊗ yσ) e = (xσ ⊗ 1) eσ (1⊗ yσ) = ewσ

Observe that uσ = ewσ = wσe = ewσe ∈ eRe is invertible with inverse ew−1sigma. We
have

uσuτ = ewσewτ = ewσwτ

= e(xσ ⊗ yσ)(xτ ⊗ yτ )
= e(xσxτ ⊗ yσyτ )
= e(aσ,τxστ ⊗ bσ,τyστ )
= e(aσ,τ ⊗ bσ,τ )(xστ ⊗ yστ )
= e(aσ,τ ⊗ 1)e(bσ,τ ⊗ 1)(xστ ⊗ yστ ) by definition of e = e1

= e(aσ,τbσ,τ ⊗ 1)wστ

= e(aσ,τbσ,τ ⊗ 1)ewστ
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Therefore,

uσuτ = e(aσ,τbσ,τ ⊗ 1)uστ (3)

Now for x ∈ K,

uσe(x⊗ 1)u−1σ = e(xσ ⊗ yσ)e(x⊗ 1)e(x−1σ ⊗ y−1σ )

= e(xσx⊗ yσ)e(x−1σ ⊗ y−1σ )

= e(σ(x)xσ ⊗ yσ)e(x−1σ ⊗ y−1σ )

Thus,

uσe(x⊗ 1)u−1σ = e(σ(x)⊗ 1) (4)

Lemma 11. K ' e(K ⊗ 1) as G-modules where the G-action on e(K ⊗ 1) is given by
σ · e(c⊗ 1) = e(σ(c)⊗ 1).

Proof. Define

φ : K → e(K ⊗ 1)

c 7→ e(c⊗ 1)

It is easy to check φ is an isomorphism of k-algebras as well as of G- modules.

Lemma 12. {uσ}σ∈G is linearly independent over e(K ⊗ 1).

Proof. Suppose
∑

σ∈G e(aσ ⊗ 1)e(xσ ⊗ yσ) = 0 in R = (K,G, a)⊗ (K,G, b). Then∑
σ∈G

e(aσ ⊗ 1)(xσ ⊗ 1)(1⊗ yσ) = 0

But {1⊗ yσ} form a basis for R as (K,G, a)⊗ 1-module.

⇒ e(aσ ⊗ 1)(xσ ⊗ 1) =0 ∀σ ∈ G
e(aσ ⊗ 1) = 0

since xσ ⊗ 1 is invertible.

From Eqn (3), (4) and Lemma 12, we conclude that

eRe ⊇ (e(K ⊗ 1), G, e(ab⊗ 1)) (5)

with basis {uσ}σ∈G.

Lemma 13. eRe ⊆
∑

σ∈G e(K ⊗ 1)uσ.

Proof. Since {xσ} and {yσ} span (K,G, a) and (K,G, b) over K resectively, {xσ ⊗ yτ}
span R over K ⊗K. So any element r ∈ R can be written as

r =
∑
σ,τ∈G

(aσ ⊗ bτ )(xσ ⊗ yτ )
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Now

ere =
∑
σ,τ∈G

e(aσ ⊗ bτ )(xσ ⊗ 1)(1⊗ yτ )e

=
∑
σ,τ∈G

(aσ ⊗ bτ )e(xσ ⊗ 1)eτ (1⊗ yτ )

=
∑
σ,τ∈G

(aσ ⊗ bτ )(xσ ⊗ 1)eσeτ (1⊗ yτ )

But eσeτ = 0 for σ 6= τ by part (b). So

ere =
∑
σ∈G

e(aσ ⊗ bσ)(xσ ⊗ yσ)

=
∑

(aσbσ ⊗ 1)uσ

So eRe is generated by {uσ} over e(K ⊗ 1).

⇒ eRe ⊆ (e(K ⊗ 1), G, e(ab⊗ 1)) ⊆ eRe

where the last containment comes from (5). Therefore

eRe = (e(K ⊗ 1), G, e(ab⊗ 1)) ' (K,G, ab)

By part (a), we finally conclude

[(K,G, a)⊗ (K,G, b)] = [R] = [eRe] = [(K,G, ab)]

32. Norms and Traces:
Let R be a finite dimensional algebra over a field k. If x ∈ R, then left multiplication by x
is a k-endomorphism of R. The norm of this k- endomorphism, i.e., the determinant of the
associated linear transformation, is called the norm of x, denoted by NR/k(x) or N(x) if the
underlying algebra is understood.
Let R be a finite dimensional algebra over a field k and let x ∈ R. Show that the following
properties hold.

(a) N(x) = 0 iff x is invertible.
Solution:
Define

φ : R→ Endk(R)

x 7→ φx : r 7→ xr

where for an element x ∈ R, φx denotes left multiplication by x. Clearly φ is a homo-
morphism of k-algebras. Note that N(x) = det(φx) and hence N(x1x2) = det(φx1x2) =
det(φx1φx2) = N(x1)N(x2). So the norm map

N : R→ k

is multiplicative. Therefore if x is invertible, we have 1 = N(xx−1) = N(x)N(x−1).
This implies N(x) 6= 0.
Conversely suppose N(x) 6= 0. Then x is not a zero divisor in R as N() is multiplicative.
Now the result follows from the following lemma.
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Lemma 14. In an Artinian ringR, an element x ∈ R is invertible if it is not a zero divisor.

Proof. Let x ∈ R be an element that is not a zero divisor. Consider the descending chain
of ideals (x) ⊇ (x2) ⊇ (x3) ⊇ · · · . Since R is Artinian , there exists an integer n such
that (xn) = (xn+1). So xn = yxn+1 for some y ∈ R. This implies xn(yx− 1) = 0. But x
is not a zero divisor, so yx = 1 and thus x is invertible.

(b) N : R∗ → k∗ is a homomorphism.
Solution:
With notations as in (a), this follows from the fact that φ is a homomorphism and deter-
minant is multiplicative.

(c) N(a) = an if a ∈ k where n = [R : k].
Solution:
This is because for any basis of R, the matrix φa is diagonal with a along the diagonal.

(d) T : R→ k is k-linear where T is the trace map i.e., T (x) = Tr(φx).
Solution:
Let a, b ∈ k and x, y ∈ R.Then it is easy to see that φax+by = φaφx + φbφy. Since
φa and φb are diagonal matrices with a and b along the diagonal respectively, we have
T (ax+ by) = Tr(φax+by) = Tr(φaφx +φbφy) = aTr(φx) + bTr(φy) = aT (x) + bT (y).

(e) T (xy) = T (yx).
Solution:
This follows from the properties of trace of product of matrices.

(f) T (a) = na for a ∈ k.
Solution:
This follows from the fact that φa is a diagonal matrix with a along the diagonal.

33. Prove the following:

(a) Norm and trace are invariant under extension of scalars. That is if S = RK for a field K
containing k, then ∀x ∈ R

NS/K(x) = NR/k(x)

TS/K(x) = TR/k(x)

This is because for x ∈ R, left multiplication by (x ⊗ 1) is the endomorphism given by
φx⊗1 ∈ EndK(S) where φx is defined as in the previous problem (which is multiplication
by x in R). Therefore NS/K(x) := NS/K(x ⊗ 1) = det(φx ⊗ 1) = det(φx) = NR/k(x).
Similar argument shows TS/K(x) = TR/k(x).

(b) Norm and trace are compatible with direct products i.e., if R = R1 ×R2, then

NR/k(x1, x2) = NR1/k(x1) ·NR2/k(x2)TR/k(x1, x2) = TR1/k(x1) + TR2/k(x2)

Solution:
This is because the linear transformation φx in R induced by left multiplication by x =
(x1, x2) is given by the direct sum φx1 ⊕ φx2 .

(c) If x ∈ J(R), then N(1 + x) = 1 and T (x) = 0 where J(R) is the Jacobson radical of R
Solution:
Since x ∈ J(R), x is nilpotent. So T (x) = 0. Now choose a k-basis of R such that the
matrix [φx] with respect to this basis is in rational canonical form. Since the characteristic
polynomial of φx is tn where n = [R : k], [φx] has zeros along diagonal entries.

N(1 + x) = det(1 + [φx]) = det([φx]− λI)|λ=−1 = (−1)ntn|λ=−1 = 1
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(d) In the notation of Exercise 30,

NK/k(x) =
∏
i

σi(x)

Let p(z) be the minimal polynomial of x ∈ K of degree m. Let F = k(x), so that [F :
k] = m. Let [K : F ] = n so that [K; k] = mn. Since K is separable, K = k(α) and the
number of distince embeddings ofK ↪→ L in its splitting field is equal to the degree of the
minimal polynomial of α over k which is equal to mn. Let q(z) be the minimal polyno-
mial of α over F . Then deg q(z) = [K : F ] = n. Note that {1, x, · · ·xm−1} forms a basis
for F over k and {1, x, · · · , xm−1, α, αx, · · · , αxm−1, · · · , αn−1, αn−1x, · · · , αn−1xm−1}
form a basis for K/k. With respect to this basis, multiplication by x is an n × n block
diagonal matrix of the form

[φx] =


C 0 0 · · · 0
0 C 0 · · · 0
...

...
... · · · ...

0 0 0 · · · C


where C is the m × m companion matrix for p(z). Now N(x) = det(φx) = det(C)n.
Since the characteristic polynomial of the companion matrix of a polynomial is the poly-
nomial itself, we see that the characteristic polynomial of C is p(z) and hence its deter-
minant is equal to the constant term p0 of p(z) which is nothing but the product of its
roots i.e., p0 =

∏m
j=1 γj(x) where {γj(x)}mj=1 are the (distinct) roots of p(x). Here γj give

distinct embeddings of F into L and hence are elements ofG/H whereH is the subgroup
of G that fixes F . Now

N(x) = det(C)n

=
m∏
j=1

γj(x)n

=
m∏
j=1

∏
θ∈H

γjθ(x)

=
mn∏
i=1

σl(x)

Similarly

TK/k(x) = n · TF/k = n(
m∑
j=1

γj(x))

=
m∑
j=1

∑
θ∈H

γjθ(x)

=
n∑
i=1

σi(x)

(e) If R = Mn(k), then

NR/k(x) = det(x)n

TR/k(x) = n · Tr(x)
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Solution:
Let eij denote the matrix with 1 at the (i, j)-th entry and 0 everywhere else. Then the set
{eij : 1 ≤ i, j ≤ n} forms a basis for Mn(k). It is now easy to see that with respect
to some ordering of the basis, the linear operator associated to left multiplication by a
matrix x is just n2 × n2 the block diagonal matrix with x along the diagonal. Hence
N(x) = det(x)n and T (x) = n · Tr(x).

34. A bilinear form B(x, y) on a finite dimensional vector space V over a field kis a function
B : V × V → k which is linear as a function of one variable when the other is kept fixed. B is
said to be non-degenerateif the following equivalent criteria hold:

(a) If x ∈ V satisfies , B(x, y) = 0∀y ∈ V , then x = 0.

(b) The map f : V → V ∗ = Homk(V, k) defined by f(x)(y) = B(x, y) is an isomorphism.

(c) For any basis {e1, · · · en} of V , the matrix [B(ei, ej)] is invertible.

(d) For some basis {e1, · · · en} of V , the matrix [B(ei, ej)] is invertible.

Show that the four conditions are equivalent. Recall that a finite dimensional algebra R over
k is called separable over k if its center is a product of separable field extensions of k. Prove
that if char(k) = 0 or if R is commutative, then R is separable iff the bilinear form B(x, y) =
TR/k(xy) is non-degenerate.
Solution: First I will show that the conditions are equivalent.
(a)⇒ (b): By (a) for a given x, B(x, y) = 0 ∀y implies x = 0. This means that the map

f : V → V ∗ = Homk(V, k)

x 7→ f(x)(y) = B(x, y)

is injective. Since dimV = dimV ∗, f is surjective and hence is an isomorphism.
(b)⇒ (c): Suppose the matrix M = [(B(ei, ej)] is not invertible for some basis {ei}. of V .
Then the rows of M are linearly dependent over k. So there exists c1, c2, · · · , cn ∈ k, not all
zero, such that ∑

j

cjB(ej, ei) = 0 ∀i

⇒ B(
∑
j

cjej, ei) = 0 ∀i

⇒ B(
∑
j

cjej, y) = 0 ∀y

⇒ f(
∑
j

cjej) = 0

This means that f is not injective and hence is not an isomorphism.
(c)⇒ (d): Trivial.
(d)⇒ (a): Suppose [B(ei, ek)] is invertible for some basis {ei}. Let x ∈ V be such that
B(x, y) = 0 ∀y ∈ V .Write x =

∑
j cjej . Then

B(
∑
j

cjej, ei) = 0 ∀i

⇒
∑
j

cjB(ej, ei) = 0 ∀i
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This means that the rows of [B(ei, ej)] are linearly dependent unless cj = 0 ∀j i.e, x = 0.
Now I will prove the second part of the problem.
Remark:To do this we need the additional hypothesis that R is also semisimple because finite
dimensional k-algebras whose center is a product of separable field extensions of k need not
be semisimple. Here is an example:
Example: Let R = k[x, y]/(xn = 0, yn = a, yx = ζxy) where a ∈ k, ζ ∈ k∗ is a primitive n-th
root of unity.ClearlyR is finite dimensional k-algebra that is not semisimple as it has nilpotents.
Moreover note that the set {xiyj}0≤i,j≤n−1 forms a basis for R. Let us order the basis as
(i1, j1) > (i2, j2) if (i1 > i2) or (i1 = i2 and j1 > j2). With respect to this ordered basis, it
is now easy to see that Tr(xi+1yj) = B(x, xiyj) = 0 ∀i, j. So B(x, v) = 0 ∀v ∈ R. This
implies that B(v, w) = Tr(vw) is degenerate. Therefore the assumption that R is semisimple
is necessary for the statement of the problem to be true.
So we will proceed with the additional assumption that semisimplicity is part of the definition
of a separable algebra.
⇒: Suppose R is separable (and hence semisimple by the above Remark). So R ' R1 ×R2 ×
· · ·Rm where Ri is a simple k-algebra. Let Ki be the center of Ri. Then it is easy to check that
Ki is a field. The center of R is thus K1 × K2 × · · · × Km. Since R is separable Ki/k is a
separabe field extension . Since R is finite dimensional, Ki/k is a finite dimensional separable
field extension. By Structure theorem for simple rings, Ri ' Mni(D) where Di is a division
ring with center Ki. Let

B′ : (R⊗k k)× (R⊗k k)→ k

(v ⊗ a, w ⊗ b) 7→ abB(v, w)

be obtained by extending B to k linearly. Then B′ is a bilinear form on the k-vector space
R ⊗k k. Note that if {e1, · · · , el} is abasis for R, then {e1 ⊗ 1, · · · el ⊗ 1} is a k-basis for
R⊗k k. Moreover, for any two vectors v =

∑
ei ⊗ ai, w =

∑
ei ⊗ bi ∈ R⊗k k, we have

B′(v, w) = B′(
∑

ei ⊗ ai,
∑

ei ⊗ bi)

=
∑
i,j

aibjB
′(ei ⊗ 1, ej ⊗ 1)

=
∑
i,j

aibjB(ei, ej)

=
∑
i,j

aibjTR/k(eiej)

=
∑
i,j

aibjTS/k(ei ⊗ 1)(ej ⊗ 1)

(where S = R⊗k k since trace is invariant under extension of scalars by 33(a))

= TS/k(
∑
i

(ei ⊗ ai)
∑
j

(ej ⊗ bj) (since trace is linear by 32(a))

= TS/k(vw) (6)

Lemma 15. B′ is non-degenrate iff B is.

Proof. This is easy to see because the matrix [(B(ei, ej))] is invertible iff [(B′(ei⊗ 1, ej ⊗ 1))]
is.

Now [(B′(ei ⊗ 1, ej ⊗ 1)] is invertible iff [(B′(fi, fj)] is invertible for any basis{fi} of S over
k. But by (6), B′(fi, fj) = TS/k(fifj). So to show that B(ei, ej) is invertible it suffices to show
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that the matrix [(B′(fi, fj))] = [(TS/k(fifj))] is invertible for some basis {fi} of S.

Remark 1. Suppose R ' R1 × · · · × Rm then the matrix [(TS/k(fifj))] decomposes as direct
sum of m matrix blocks. So the invertibility of [(TS/k(fifj))] is equivalent to the invertibility of
each block. Hence , we can assume that R is simple. Moreover,

S = R⊗k k ' (R⊗K K)⊗k k where K is the center of R

' R⊗K (K ⊗k k)

' R⊗K (⊕ri=1k) since K/k is separable by hypothesis

' ⊕R⊗K k 'Mn(k)

Therefore to show invertibility of [(B′(fi, fj))], we can assume without loss of generality that
S = Mn(k).

Consider the matrix [(T (eijers)] where eij is the matrix in Mn(k) with 1 at the (i, j)-th position
and zero everywhere else. Note that eijers is non zero and is equal to eis if j = r and that
T (eij) = n · Tr(eij) by Problem 33(e) which equal n if i = j and 0 else. This means that with
respect to some ordering of the basis {eij}, the matrix [(T (eijers))] equals nI . If char k = 0,
then this matrix is clearly invertible. IfR is commutative, so is S. By Remark 1, we can assume
S = k whose associated bilinear form given by trace is clearly non-degenrate. Therefore we
are done whenever char k = 0 or if R is commutative.
Warning: This is not true if char k = p 6= 0, for TR/k = 0 where R = Mp(k) by Problem
33(e).
(⇐:) For the converse, suppose that R is not separable. Let C be its center. Then C is a finite
dimensional commutative k-algebra.

Lemma 16. C ⊗k K has nilpotent elements for some field extension K/k.

Proof. Suppose C has no nilpotents. So the Jacobson radical of C is trivial. By Corollary 2.3
from the book,C is semisimple. ButC is also commutative. SoC ' K1×· · ·×Kn whereKi/k
are fintie field extensions of k. By hypothesis, R is not separable, so Ki/k is inseparable for
some i. Let α ∈ Ki be an inseparable element and let K be the splitting field for the minimal
polynomial of α. Then C ⊗k K ⊇ Ki ⊗k K ⊇ k(α)⊗k K clearly contains nilpotents.

Since C⊗kK is in the center of R⊗kK, we conclude that the center of S := R⊗kK contains
nilpotents for some field extension K/k. Let B′ : S × S → K be the bilinear form obtained
by extending K-linearly the bilinear for mB : R × R → k over K i.e., B′(r1 ⊗ a, r2 ⊗ b) =
abB(r1, r2) = abTR/k(r1r2). Recall that by (6), B′(v, w) = TS/k(vw) and by Lemma 15, B′ is
non-degenerate iff B is. Now pick a nilpotent δ in the center of S. Then B′(δ, x) = TS/k(δx).
Since δ is in the center, δx is also nilpotent ∀x ∈ S yielding TS/k(δx) = B′(δ, x) = 0 ∀x ∈ S.
So B′ and hence B is degenerate. We are done.

35. Let K be a Galois extension of k with Galois group G which is cyclic of order n. Prove that
Br(K/k) ' k∗/NK/k(K

∗).
Solution: Given any class T ∈ Br(K/k), pick a central simple algebra A of degree n in the
class (you can do this by Theorem 4.4 in Benson-Farb). Moreover K is a maximal subfiels of
A and [K : k] = n. Fix σ ∈ G = Gal(K/k) a generator. By Skolem-Noether, there exists
xσ ∈ A such that

xσcx
−1
σ = σ(c) ∀c ∈ K
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For j ≥ 2, pick xσj = xσxσ · · ·xσ = xjσ. Now x1 = xσn = xnσ. Note that x1 ∈ C(K) = K.
Moreover,

x1xσj = xnσx
j
σ = xn+jσ = xjσx

n
σ = xσjxσn = xσjx1

By Proposition 4.8 in the book, {xσ} forms aK-basis forA. So x1 commutes with all elements
in A. So x1 ∈ k∗. Picking a different x′σ implies that

x′σ = fxσ

for some f ∈ K∗, so

x′1 = x′nσ = fσ(f) · · ·σn−1(f)xnσ
= N(f)x1

So x1 and x′1 differ by N(K∗).
Now [A] = [(K,G, {a})], where the factor set {a} is given by a1,1 = aσ,1, a1,σ = x1 (this is
because x1xσ = a1,σxσ) and aσi,σj = 1 if i, j 6= 0 mod n (this is because xσixσj = xσi+j). Let
us call such factor sets ’special’ and denote the set with a subscript s, i.e, by {a}s. This means
that for K/k cyclic Galois, any element in Br(K/k) is represented by [(K,G, {a})] where the
factor set {a} is special. So there is a well-defined map

Φ : Br(K/k)→ k∗/N(K∗)

[(K,G, {a}s)] 7→ a1,1

Suppose we have [A], [B] ∈ Br(K/k) such that [A] = [(K,G, {a}s)], [B] = [(K,G, {b}s)].
Then note that the factor set {ab} is special since {a} and {b} are special. Since [(K,G, {ab}s)] =
[(K,G, {a}s)]⊗ [(K,G, {b}s)], we conclude that Φ is a homomorphism of groups. Now I will
show that φ is am isomorphism.
Injecctivity: Suppose [(K,G, {a}s)] and [(K,G, {ab}s)] both go to the same element under
Φ.Then a1,1 = cb1,1 for some c ∈ N(K∗). Let c = N(α), for some d ∈ K∗. Then we have a
k-isomorphism

[(K,G, {a}s)]→ [(K,G, {b}s)]xσ → αyσ

Surjectivity: Let r ∈ k∗/N(K∗). Then we define A as follows. As a K-vector space,

A =
n−1⊕
i=1

Kxσi

with algebra operation as follows

xσixσj = xσi+j if i, j ≥ 1

= rxσi+j if i = 0 or j = 0

αxσiβxσj = ασi(β)xσixσj

Then [A] = [(K,G, {a})] where a1,1 = a1,σ = aσ,1 = r and aσi,σj = 0 if i, j 6= 0. Clearly A
maps to r under Φ. So Φ is surjective and hence is an isomorphism.

36. Use the preceeding problem to give another proof of the Frobenius theorem that the only finite
dimensional central division algebras over R are R and H. Also give another proof of Wedder-
burn’s theorem that all finite division rings are commutative.
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Solution:
Proof of Frobenius Theorem:
Any finite dimensional central division algebra over R is an element ofBr(C/R) ' C∗/NC/R(C∗) '
Z2. This proves the claim.
Proof of Weddernburn’s theorem:
Let D be a finite division ring with maximal subfield K. Clearly K is a finite field. Also the
center of D is Fq where q is a prime power. and K/Fq is a finite extension so that K = Fqr .
Since the maximal subfield splits a central simple algebra, D ∈ Br(K/Fq) = Br(Fqr/F) =
F∗q/NFqr/F(F∗qr) by the previous problem. The result follows from the following claim.
Claim: F∗q/NFqr/F(F∗qr) = 1.
Proof of the Claim: Let Fqr = Fq(a) and let p(t) be the minimal polynomial of a. Then the
roots of p(t) are {a, aq, · · · aqr−1}. Moreover, the matrix M associated to left multiplication by

a is just the companion matrix of p(t). Therefore N(a) = det(M) = a · a2 · · · aqr−1
= a

qr−1
q−1 ∈

F∗q . Observe that since a has order qr − 1, a
qr−1
q−1 has order q − 1and hence N(a) generates F∗q .

This proves the claim.

37. Cohomology and Applications:
Prove Proposition 4.11 from the book i.e., δ2 = 0.
Solution:
Let f ∈ Cn(G,M), so f : Gn →M .

δ2(f)(g1, g2, · · · gn+2) =

g1 · δf(g2, · · · gn+2)︸ ︷︷ ︸
A

+
n+1∑
i=1

(−1)iδf(g1, · · · , gigi+1, · · · , gn+2)︸ ︷︷ ︸
B

+ (−1)n+2δf(g1, · · · , gn+1)︸ ︷︷ ︸
C

Now it is easy to check that

A = g1g2f(g3, · · · , gn+2) +
n+1∑
i=2

(−1)i−1f(g2, · · · , gigi+1, · · · gn+2) + (−1)n+1gig(g2, · · · , gn+1)

B =
n+1∑
i=1

(−1)iδf(g1, · · · , gigi+1, · · · , gn+2)︸ ︷︷ ︸
Bi

Let us compute each Bi,

B1 = (−1)δf(g1g2, g3 · · · , gn+2)

= (−1)[g1g2 · f(g3, · · · , gn+2)− f(g1g2g3, g4, · · · , gn+2)+
n+1∑
j=3

(−1)j−1f(g1g2, · · · , gjgj+1, gn+2) + (−1)n+1f(g1g2, · · · , gn+1)]
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For 2 ≤ i ≤ n,

Bi = (−1)iδf(g1, · · · , gigi+1, · · · , gn+2)

= (−1)i[gif(g2, · · · , gigi+1, · · · gn+2) +
i−2∑
j=1

f(g1, · · · , gjgj+1, · · · , gigi+1, · · · , gn+2)

+ (−1)i−1f(g1, g2, · · · , gi−1gigi+1, · · · gn+2) +
∑

(−1)if(g1, g2, · · · , gigi+1gi+2, · · · gn+2)

+
n+1∑
j=i+2

(−1)j−1f(g1, g2, · · · , gigi+1, · · · gjgj+1, · · · gn+2) + (−1)n+1f(g1, g2, · · · , gigi+1, · · · , gn+1)]

Bn+1 = (−1)n+1δf(g1, g2, · · · , gn+1gn+2)

= (−1)n+1[g1f(g2, · · · , gn+1gn+2) +
n−1∑
j=1

f(g1, · · · gjgj+1, · · · , gn+1gn+2)

+ (−1)nf(g1, · · · gn−1, gngn+1gn+2) + (−1)n+1f(g1, · · · , gn)]

C = (−1)n+2δf(g1, · · · , gn+1)

= (−1)n+2[g1 · f(g2, · · · , gn+1) +
n∑
j=1

(−1)jf(g1, · · · , gjgj+1, · · · gn+1) + (−1)n+1f(g1, g2, · · · gn)]

After painful suffering one can check that δ2 = A+B + C = 0.

38. LetG be a finite group and letM be aG-module. Show by a direct argument that every element
of Hn(G,M) is annihilated by |G| for n ≥ 1.
Solution:
Let f ∈ Hn(G,M)⇒ δf = 0.

δf(g1, · · · , gn+1) = 0 ∀g1, · · · , gn+1

⇒ g1f(g2, · · · gn+1) +
n∑
i=1

(−1)if(g1, · · · gigi+1, · · · gn+1) + (−1)n+1f(g1, · · · , gn) = 0

⇒ (−1)nf(g1, · · · , gn) = g1f(g2, · · · gn+1) +
n∑
i=1

f(g1, · · · gigi+1, · · · gn+1)

Summing over all gn+1,

(−1)n
∑

gn+1∈G

f(g1, · · · gn) =
∑

gn+1∈G

g1 · f(g2, · · · , gn+1) +
∑

gn+1∈G

n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · gn+1)

(−1)n|G|f(g1, · · · , gn) =
∑

gn+1∈G

g1 · f(g2, · · · , gn+1) +
∑

gn+1∈G

n−1∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1)

+
∑

gn+1∈G

(−1)nf(g1, g2, · · · , gngn + 1)
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Let h(g1, g2, · · · gn−1) =
∑

gn∈G f(g1, · · · gn−1, gn). Note that∑
gn+1∈G

f(g1, g2, · · · gngn+1) =
∑
gn∈G

f(g1, g2, · · · , gn) = h(g1, g2, · · · gn−1)

So we get,

(−1)n|G|f(g1, · · · , gn) = g1h(g2, · · · , gn) +
n−1∑
i=1

(−1)ih(g1, · · · gigi+1, · · · , gn)

+ (−1)nh(g1, g2, · · · , gn−1)
= δh(g1, g2, · · · gn)⇒ |G|f = 0 in Hn(G,M)

39. Try to understand the following argument, checking statements and filling in details as needed.
By Theorem 4.13, H2(G,K∗) ' Br(K/k) and hence classifies central simple algebras. By an
entirely similar argument, one can show that for a G-module M , H2(G,M) classifies exten-
sions

1→M → E → G→ 1

inducing the given G-action on M (See K.Brown, Cohomology of Groups). If M is finite and
|M | is prime to |G|, then note that

(a) Multiplication by |G| is an automorphism of M and so induces an automorphism of
H2(G,M).
Solution:
Since gcd(|G|, |M |) = 1, there exists n, r ∈ Z such that n|G|+ r|M | = 1. For an integer
k, let φk denote multiplication by k in M. Then it is easy to see that φn is the inverse of
φ|G|. In particular, φ|G| is an automorphism ofM .In fact, it is aG-invariant automorphism
of M . Now a G-invariant automorphism φ of M , induces an automorphism of H(G,M)
via

Φ : H2(G,M)→ H2(G,M)

f → φ ◦ f

The above map is well defined because δφ ◦ f = φδf and hence Φ takes boundaries to
boundaries and co-cycles to co-cycles. Its inverse is given by f 7→ φ−1 ◦ f .

(b) Multiplication by |G| kills H2(G,M) by the previous problem. So the only possibility
is aht H2(G,M) = 0, that is there is only one extension 1 → M → E → G → 1, the
split one. Put another way, if E is a group and M is an abelian normal subgroup such that
G = E/M has order prime to |M |, then E is a semi-direct product, E = M oG. Finally,
by suitable cleverness one can reduce the arbitrary case (M non-abelian) to the case of M
abelian, thus giving the following:

Theorem 17 (Schur-Zehhenhaus). If G is a finite group, H CG a normal subgroup with
|H| prime to [G : H], then G is a semi-direct product G = H o (G/H). In other words,
any normal Hall subgroup H of a finite group G has a complement in G.

Proof. The case when H is abelian is clear as proved above using cohomology. Now let
us prove Schur-Zehhenhaus for arbitrary H . The following proof is developed based on
the outline given in Wikipedia.
The proof is by induction on |G|.
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i. Base case: If |G| is prime, then clearly the claim is true as H = 1, G/H = G or
H = G,G/H = 1. In both cases, G ' H × G/H . So assume that the claim is true
for any smaller group.

ii. Case when H is abelian: If H is abelian, the claim is true as argued above using
cohomology.

iii. Case when H is solvable: Let H be a non-trivial solvable subgroup. This means that
the derived series eventually goes to 1 i.e.,

H BH(1) = [H,H]BH(2) = [H(1), H(1)]B · · ·BH(n) = 1

Note tha in the above series H(n−1) is a non-trivial abelian subgroup of H that is
characteristic in H . Since H is normal in G, H(n−1) is stable under conjugation by
elements in G and thus is a non-trivial abelian normal subgroup in G. For simplicity,
call A := H(n−1). Now H/A is a normal Hall subgroup of G/A. So by induction
hypothesis, there is a subgroup F/A in G/A that is complement of H/A. Thus we
get subgroups F , H in G such that F ∩ H = A and FH = G. Now F contains
A as a normal abelian subgroup. I claim that A is a Hall subgroup of F i.e., |F/A|
and |A| are coprime. Because otherwise let p be a prime dividing both. Then F
contains an element of order p that is not in A. Since F ∩ H = A, this means that
G contains an element of order p not in H . Now since |A| divides |H|, p divides
|H|.This contradicts the assumption that H is a normal subgroup of G. So A is an
abelian normal Hall subgroup of F and F contains a complement of A. Call it E.
Now G = FH = EAH = EH . Moreover since F ∩H = A and E ∩A = 1, we get
E ∩H = 1. So E si complement to H in G and we are done.

iv. If the normalizer of every p-Sylow subgroup P of H equals G, then P is normal in
H and by Sylow theory, H is a direct product of p-Sylow subgroups and hence is
nilpotent. In particular, H is solvable and we are done by previous step.

v. Suppose the normalizer N = NG(P ) of some p-Sylow subgroup P of H is smaller
than G.
Claim: G=NH
Proof of the Claim: Pick g ∈ G. Then gPg−1 is a Sylow p-subgroup and hence P
and gPg−1 are conjugate by an element of H . So there exists h ∈ H such that
gPg−1 = hPh−1. So g ∈ hN ⇒ G = HN . But H CG⇒ G = NH .
Since N is smaller than G and N ∩H is a normal Hall subgroup of N , by induction,
N ∩H has a complement E in N so that N = E(N ∩H) and (N ∩H)∩E = 1. But
G = NH = E(N∩H)H = EH . Moreover, sinceE ⊆ N , E∩H = E∩(N∩H) =
1, so that E is complement to H and we are done.

40. Prove the following corollary to the above discussion.

Corollary 1. Let A be a finite dimensional central simple algebra over k with Galois splitting
field L and let n = [L : k]. Then

A⊗k A⊗k · · · ⊗k A︸ ︷︷ ︸
n

= Mm(k)

for some m.

Proof. Since Br(L/k) ' H2(G,L∗) where G = Gal(L/k) and |G| annihilates H2(G,L∗) by
the previous discussion, we have for every [A] ∈ Br(L/k), |G|[A] = n[A] = [A⊗n] = [k].
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41. Prove Hilbert’s so called ’Theorem 90’: If K/k is a Galois extension and G = Gal(K/k), then
H0(G,K∗) = k∗ and H1(G,K∗) = 1.
Proof of Hilbert Theoren 90:
Let f ∈ H0(G,K∗) i.e., f ∈ K∗ such that δf(g) = g · f = f ∀g ∈ G. Then f is fixed by G.
So f ∈ k∗. This proves the first part.Now let us prove the second part.
Case 1: G is finite i.e., K/k is a finite Galois extension. Now let f ∈ H1(G,K∗) i.e., f : G→
K∗ that satisfies (δf)(τσ) = 1 ∀σ, τ ∈ G.
Claim1: There exists c ∈ K∗ such that∑

σ∈G

f(σ)σ(c) 6= 0

Proof of Calim1: Since K/k is finite Galois, by primitive element theorem, we have K = k(a)
for some a. Let G = {1 = σ1, σ2, · · · , σn}. Consider the matrix

M =


1 1 · · · 1
a σ2(a) · · · σn(a)
a2 σ2(a)2 · · · σn(a)2

...
... · · · ...

a σ2(a)n−1 · · · σn(a)n−1


This is full rank Vandermonde matrix. Hence it has trivial null space. Therefore,

M


f(σ1)
f(σ2)

...
f(σn)

 6= 0

⇒
∑
σ∈G

f(σ)σ(ar) 6= 0

for some r. Take c = ar.

Claim2: With c as above, let b =
∑

σ∈G f(σ)σ(c) 6= 0. Then τ(b) = f(τ)−1b ∀τ ∈ G.
Proof of Calim2:

f(τ)−1b = f(τ)−1
∑
σ∈G

f(σ)σ(a)

= f(τ−1)
∑
σ∈G

f(τσ)τσ(a)

=
∑
σ∈G

f(τ)−1f(τσ)τσ(a)

But since δf(τ, σ) = 1 we have f(τ)−1f(τσ) = τf(σ). So we get,

f(τ)−1b =
∑
σ∈G

τ(f(σ))τσ(a)

= τ(
∑
σ∈G

f(σ)σ(a))

= τ(b)
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Therefore

f(τ) = τ(b)−1b

= τ(b−1)(b−1)−1

= (δb−1)(τ) ∀τ ∈ G

So f = 0 in H1(G,K∗).
Case 2: G is infinite.
In this case

G = lim←−
E/kfinite Galois, E⊆K

Gal(E/k)

⇒ H1(G,K∗) = lim←−
E/kfinite Galois, E⊆K

H1(Gal(E/k), E∗) = 0

42. (a) Let G be a group and H be a subgroup. Let M be a G-module. Show that by restricting a
function fromG×G×· · ·×G→M to be a function to a functionH×H×· · ·×H →M ,
we obtain a homomorphism of co-chain groups

ResGH : Cn(G,M)→ Cn(H,M)

”Res” stands for restriction. The map is called this for obvious reasons. Show that ResGH
maps Zn(G,M) to Zn(H,M) and Bn(G,M) to Bn(H,M) and hence induces a homo-
morphism

ResGH : Hn(G,M)→ Hn(H,M)

Solution:
It is clear that restriction induces a homomorphism on co-chain groups. Now let f ∈
Zn(G,M) so that δf = 0. Then

δf |H×H×···×H = (δf)|H×H×···×H = 0

So ResGH maps Zn(G,M) to Zn(H,M). Similarly if f = δg, then

f |H×H×···×H = (δg)|H×H×···×H = δg|H×H×···×H

So ResGH maps Bn(G,M) to Bn(H,M) and hence induces a homomorphism between
cohomologies.

(b) Let k ⊆ F ⊆ K be fields. Show that extension of scalars induces a map

Br(K/k)→ Br(K/F )

[A] 7→ [F ⊗k A]

Solution:
This is because if A ∼ B, then A ⊗k F ∼ B ⊗k F and A ⊗k B ⊗k K = (A ⊗k K) ⊗K
(B ⊗k K)

(c) Let K/k be a Galois extension with Galois group G. Let H be a subgroup of G and F be
the corresponding fixed field. Let f be a factor set satisfying the cocycle condition. Let
A = (K,G, f) be the central simple algebra corresponding to f . Let {xσ : σ ∈ G} be the
ususalK-basis ofA, that is, xσu = σ(u)xσ and xσxτ = fσ,τxστ . Prove that {xσ : σ ∈ H}
is a K- basis for A′ = (K,H, f |H).
Solution: This is clear.
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(d) Let k ⊆ F ⊆ K and H a subgroup of G as in part (c). Show that the following diagram
commutes.

H2(G,K∗) Br(K/k)

H2(H,K∗) Br(K/F )

'

ResGH ResFk

'

Solution:
Recall from the above notation that A′ = (K,H, f |H). To show that the above diagram
commutes one needs to show that [A′] = [A ⊗k F ]. Since A′ is a subalgebra of A, we
have a right module action of A′ on A via multiplication on the right. Now consider the
natural map

A⊗k F → EndA′(A) := E

αxσ ⊗ c 7→ φαxσ⊗c

where φαxσ⊗c(exτ ) = αxσ(exτ )c. This map is A′-invariant because H and hence all
{xτ : τ ∈ H} fix F .This map is clearly a homomorphism of F -algebras and is easy to
see that it is injective. Moreover by Proposition 6 as proved before,

dimF (E) = (deg E)2 = (rdimA′A)2 =

(
deg A · [K : F ]

deg A′

)2

= [K : k][K : F ]2[K : f ]2

= [K : k]

= dimFA⊗k F

So the map is surjective and hence is an isomorphism. From Proposition 6 we also con-
clude that [A′] = [E] = [A⊗k F ].

43. (a) Let G be a group, H a normal subgroup and M a G-module. Show that MH = {m ∈
M : σ(m) = m ∀σ ∈ H} is a G/H-module. Show that there is a homomorphism

InfGH : H2(G/H,MH)→ H2(G,M)

which sends a cocycle f to the function defined by

(σ, τ) 7→ f(σH, τH)

”Inf” stands for inflationbecause it gives a map from the cohomology of a quotient group
G/H into the cohomology ofthe (inflated) full group G.
Solution:
It is easy to see that the map

InfGH : C2(G/H,MH)→ C2(G,M)

f 7→ f ◦ π (where π : G×G→ G/H ×G/H is the projection)

is a homomorphism and takes cocycles to cocyles and coboundaries to coboundaries, thus
inducing a map between the cohomologies.

36



(b) Let k ⊆ F ⊆ K be fields such that [K : k] <∞. Let B be a central simple algebra over
k with maximal commutative subring F . Considering K ⊗F B as right B-module, show
that C := EndB(K ⊗F B) is a central simple algebra over k with maximal commutative
subring K. Further show that [C] = [B] in Br(k).
Solution:
The fact that [C] = [B] is clear by Proposition 6. Now note that B ' (F,G/H, f) for
some factor set f . Let A be the central simple algebra over k given by inflating f i.e,
A = (K,G, f ′) where f ′ = InfGH (f). So A is generated as a K-basis by {xσ : σ ∈ G}
with multiplication given by

αxσβxτ = ασ(β)fσH,τHxστ

Consider the map

A→ EndB(K ⊗F B) = C

αxσ 7→ φαxσ

where φαxσ(c ⊗ xτH) = ασ(c) ⊗ xσHxτH . It is easy to see that this map is a k-algebra
homomorphism that is injective. Moreover, by Proposition 6, C is central simple over k
and

deg C = rdimB(K ⊗F B)

=
dimkK ⊗F B

deg B

=
dimFKdimFB

deg B

= dimFK = deg A

So the map is surjective and hence is an isomorphism. Therefore the maximal subfield of
C = maximal subfield of A = K.

(c) Show that the following diagram commutes:

H2(G/H,F ∗) Br(F/k)

H2(G,K∗) Br(K/k)

'

InfGH Id : B 7→ B

'

With the notations as before, the diagram commutes if [B] = [A] which is proved in part
(b). So we are done.

44. Show that the following sequence is exact:

0→ H2(G/H,F ∗)
InfGH−−−→ H2(G,K∗)

ResGH−−−→ H2(H,K∗)

Warning: The map ResGH is not necessarily surjective as claimed incorrectly in the book.
Solution: From previous two exercises,
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0 H2(G/H,F ∗) H2(G,K∗) H2(H,K∗)

0 Br(F/k) Br(K/k) Br(K/F )

InfGH

'

ResGH

' '

I R

where I : A 7→ A and R : A 7→ A ⊗k F . Since the squares commute as proved in previous
problems, to show exactness of the top sequence, it suffices to show exactness of the bottom
sequence.We will show that now:
I is injective:
This is clear since I(A) = A.
R ◦ I = 0:
Let A ∈ Br(F/k), then F splits A. So we have R ◦ I(A) = R(A) = [A⊗k F ] = [k] = 0.
Ker R = Im I:
Suppose R(A) = 0 where A ∈ Br(K/k). Then A⊗k F ' Mn(F ). This means that A is split
by F . So A ∈ Br(F/k).

We have shown that the sequence is exact.

DONE!!!
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