Solutions to Exercises in Chapter 4 of “Noncommutative
Algebra” by Benson Farb & Keith Dennis

1. Show that the following four conditions (one page 110) for two algebras to be similar are indeed
equivalent. Let S and 7" be finite dimensional central simple k-algebras. Then S ~ T, i.e., S
is similar to 7" if the following equivalent conditions hold:

() If S ~ M, (D)and T' ~ M,,(E) for division rings D, E/, then D ~ E
(b) There exisits m, n such that S ® M,, (k) ~ T @ M,(k)
(c) There exists m, n such that M,,(S) ~ M, (T)

(d) If M is the unique simple S-module and N is the unique simple 7-module, then Endg(M) ~

Solution: (a) = (b): Let S ~ M, (D), T ~ M, (E). Then S ® M,(k) ~ My,,(D) and
T ® M,(k) ~ Mym(E). So D ~ E = (b).

(b) = (c¢): Follows from Lemma 4.1 (i) in the book.

(c) = (d): We first prove the following.

Proposition 1. Suppose S ~ M, (D) with D" = M, the unique simple left S-module. Then
Endg(M) ~ D°. Similarly if N is the unique simple right S-module, then Ends(N) ~ D.

Proof. Clearly, we have an injection

D — Endg(M)
d? — ¢g:m— m.d

To show that the map is surjective, let f € Endg(M). Let {e;} denote the standard basis
of M over D (acting from the left). Let £;; denote the (i,j)-elementary matrix. Now for any



m = Ae; € M forsome A € S,

f(m) = f(Aey),for someA € S
= Af(el)
= Af(Ener)
= AEllf(€1>
d,
— AEll d:2
d

=A| .| = (Aer)dr = m.dy = ¢g,(m)

So D°? = Endg(M). The proof for simple right S-modules is similar. O

Using the above claim let us prove (¢) = (d). Given that Q := M,,(S) ~ M, (T) for
some m,n where S ~ M, (D) and T' ~ M;(A). Then by hypothesis M,,,.(D) ~ M,(A).
Let V' be the unique simple ()-module. Then by the claim, Endg(V) ~ D ~ A, yielding
Endg(M) ~ D ~ A ~ Endp(N).

(d) = (a): By the claim, D? ~ Endg(M) ~ Endr(N) ~ A°. So D ~ A.

. Let A = [a;;] € M, (k)and B = [by] € M,,(k). The Kronecker product A® B is the nm x nm
block matrix [Aby|1 < k, 1 < m. Prove that the mapping
M, (k) @ M,,(k) = M,,,(k)
(A,B)—» A® B

induces a k-algebra isomorphism.

Solution:
First note that the map is well-defined (Easy to check). To see that it is a k-algebra morphism,
denote the ¢-th row of B by r; and the j-th column of B; by s;. Then

A1Ay @ BBy = [A; Aor;si)ij

= [A1(r3)]:[A2(s5)];
= (A; ® B1)(Ay ® By)

Sjl
S
where for ry = [Til Tio« - T’Z‘m], Al (I‘i) = [Asz‘l Al’l“ig s Alrim] and for 8j = ?2 . AQ(SJ) =
Sim
AQSjl
Assjo L o
. The map is injective beacuse by definition if A® B = Othen A = O or B = 0.
A25jm

Since the dimension of both domain and codomain equals to n?m?, the map is surjective and
hence an isomorphism.



3. Show that the set of isomorphism classes of finite dimensional central simple algebras over a
field k actually forms a set. Estimate its cardinality.

4.

(a)

(b)

Show that Br() is a functor from the category of fields and field homomorphisms to the
category of abelian groups and group homomorphisms
Solution: Consider

Br : Fields — AbelianGroups
k ~ Br(k)
i:k— K~ Br(i): Br(k) - Br(K)

where Br(i) takes a central simple algebra A over k to A ®; K. Note that Br(i) is a
group homomorphism becuse it takes A®; Bto A®p BRr K ~ (AR, K) QK (B K).
Clearly, Br(id) is the identity. Moreover, if &; ER ko 25 ks is a composition of maps then
Br(g) o Br(f)(A) = (A®y, k) @, ks = A @y, k3 = Br(go f).

Leti: k — K and j : K — K be homomorphism of fields and let i, and 7, be the induced
maps from Br(k) to Br(K). Let F = {x € k : i(z) = j(x)} and assume that K /i(F) is
finite Galois. Prove that 7, = 7,.

Solution: This is not true.

5. Give an example of two finite dimensional central fivision algebras over k£ whose tensor prod-
uct (over k) is not a division algebra.

Solution:

Let H denote the real quarternions i.e., H = R & Ri & Rj & Rk with 1) = k, jk = i, ki =
j,i% = j* = k? = —1. Then H is a division algebra. So is H?. But H ®g H ~ M,(R) is not
a division algebra.

6.

Digression: H ~ H since [H] has order 2 in Br(RR). The explicit isomorphism is given by

H—H
r—=Tr
i —3%
j— —r?
k— —i?

It is easy to check that it is a R-algebra isomorphism.

(a)

Prove that Br(k) = 0 for any algebraic extension of finite fields

Solution:

Recall the definition of C'-fields:

A field k is quasi-algebraically closed or Cy if for any homogeneous polynomial of de-
gree d in n > d variables, there exists a non-trivial solution.

The result follows from the following lemmas:
Lemma 2. Finite fields are C'.

Lemma 3. Finite extensions of C-fields are C}.
Lemma 4. Algebraic extensions of C-fields are C'.
Lemma 5. If k is a C)-field, then Br(k) = 0.



(b) Prove that Br(k) = 0 for any field & of transcendence degree one over an algebraically
closed field.
Solution:
This follows from the previous lemma and Tsen’s theorem which states that such fields
are (.

7. (a) Show that a k-algebra A is central simple over k if and only if there is a k-algebra B such
that A ® B ~ M, (k) as k-algebras for some n.
Solution:
The “only if ” part follows by taking B = A°?. Now suppose A ® B ~ M, (k) for
some B. Now if A is not simple, then there is a non-trivial two sided ideal I/ C A. This
yields I ® B, a non-trivial two sided ideal in A ® B ~ M, (k) which is simple. This is
contradiction. Threfore A is simple.
Also

Z(A) @k k C Z(A @ B) = Z(My(k)) = k
= Z(A) Ck C Z(A)
= Z(A) =k

Hence A is central simple over k.

(b) Let A, A’ be central simple over k. Show that if [A] = [A’] in Br(k) and [A : k] = [A" : K]
then A ~ A’ as k-algebras
Solution:
Let A~ M, (D) and A’ ~ M, (D) for some division algebra D over k. Then

[A:k]=[A:D|[D:kl=n%D:k|=r*D:k]=[A: K|

= n? =7’
=>n=r
= A~ A

8. Theorem 4.4 (in the book) may be interpreted as follows. Given z € Br(K/k), there is a
pair (S, ) such that z = [S] where S is central simple over k and i : K — S is a k-algebra
homomorphism whose image is a maximal commutative subalgebra of S. Suppose that (S’, ')
is another such pair and z = [S’]. Prove that ther eis a k-algebra isomorphism ¢ : S — S’ such
that p o i = 7',

Solution:

1S K] =[S+ i(K)][i(K) K]

Since i( K') is a maximal subfield of S, its centralizer is itself. So by double centralizer theorem,
(S : k] = [K : k] Similarly, [S’" : k| = [K : k]?. Thus [S : k] =[S’ : k]. Also itis given that
[S] = [S’]. Hence by Problem 7(b), there exists a k-isomorphism « : S — S’. Now « o 7 and
i’ are two homomorphisms from K to S’. By Skolem-Noether, there is an inner automorphism
0:5 — S suchthat @ o« oi =17 Then ¢ = 6 o « is the required k-isomorphism.

9. Let A be a central simple algebra over £ with maximal commutative subalgebra K. Assume
K /k is Galois with Galois group G. Let E be the normalizer of K* in A*. Find a homomor-
phism ¢ of £/ onto GG such that ker¢ = K*. E is an example of what is called a group extension
of G by K*.



10.

Solution:

Define
p:E—G
a0y

where o, is “conjugation by o”. Now ¢ is surjective by Skolem-Noether and ker¢ = Cy (K*) =
K* since K is a maximal subfield.

Let A be a central simple k-algebra containing a field F'. Let C'(F') be the centralizer of F' in
A. Show that the following equality holds in Br(F): [F @ A] = [C(F)].

Solution:
We first prove the following proposition which is the corrected version of Proposition 1.10
from ”The Book of Involutions”.

Proposition 6. Every right module of finite type M over a central simple F-algebra A has a
natural structure of left module over E = Enda(M), so that M is an A — E bimodule. If
M +# {0}, the algebra E is central simple over F' and Brauer equivalent to A. Moreover,

deg E = rdima M
deg A = rdimgM

Proof. Clearly M is an A — F bimodule. Suppose A = M,.(D) for some division algebra D.
Then N = D" written as row vector is a simple right A-module. By Proposition 1 have an
isomorphism of F'-algebras:

D — Enda(N)
Now M =~ (D")* for some s. Therefore,
E = Enda(M) ~ Enda((D")") = M,(Enda(D")) = M,(D)
This proves that E is central simple over F' and is Brauer equivalent to A. Moreover,
degFE = s.degD = rdim M

and

rs(degD)?

dimpM =
e s.degD

=r.degD = degA

]

Now F' ®; A is a central simple algebra over F'. Note that A is a right F' ®; A-module via the
action givenby a - (f ® ') = f - a - ’. Consider the map
C(F) — EndF®kK(A) =B
h — (bh

where ¢, is multiplication to the left by A. This map is clearly injective. Moreover, by Propo-
sition 6,

_dimpA  (degA)?  degA
Cdeg(F®A)  [F:k]-degA  [F:k

degB = rdimpga(A)



Now by the double centralizer theorem

| _ dimi(C(F)) _ (degA)?
dimp(C(F)) = =5 = 15 4

So the map is surjective and [C(F)] = [B] = [F ®j, K] by Proposition 6.
11. Let A be a central simple k-algebra. Prove the following

(a) If [A : k] = n?, then ind(A)/n and ind(A) = n iff A is a division algebra
Solution:
Let A ~ M, (D). Then

[A: k] =[A:D]D : K|
n? = r%ind(A)*
=n=r-ind(A)
= ind(A)/n

Moreover ind(A) = niff r = 1.
(b) If A’ is a central simple algebra over k such that [A’] = [A] in Br(k), then ind(A’) =
ind(A)
Solution:
This is easy to see.

(c) A posseses a splitting field of degree ind(A) over k.
Solution:
Let A ~ M, (D) where degD = ind(A) := n. Let K be a maximal subfield of D. Then
by the double centralizer theorem,

n?*=1[D:k|=[K:k][C(K):k]=[K:k?
=[K :kl=n

Since K splits D, it splits A too.

(d) If K is any splitting field of A, then ind(A)/[K : k].
Solution:
Let A ~ M, (D). Let K be a splitting field of A. Then by Theorem 4.4 in the book,
thre exists S suchthat [S] = [A] with degS = [K : k]. So ind(A) = ind(S) and
ind(S)/deg(S). Soind(A)/[K : k.

(e) ind(A) = min{[K : k] : K splits A}
Solution:
Follows from (d) and (e).

(f) Form > 1, ind(A®™)/ind(A)
Solution:
Let K split A. Then K also splits A®™ since

AR ARy R ARy K ~ (A®, K)®k (AQk K) -+ @k (AR K) ~ M, (K)

Moreover by (c), A has a splitting field K of degree ind(A) over k which also splits A®™.
By (d), ind(A®™)/[K : k]. But [K : k] = ind(A) so that we are done.



12. Let A be a central simple algebra over k and let K /k be a finite extension. Prove that

(a) ind(Ak)/ind(A)
Solution:
We can asssume that A is a division algebra. Since the index of a central simple algebra
divides its degree, ind(Ak)/deg(Ark). But deg(Ax) = deg(A) = ind(A) and we are
done.

(b) ind(A)/|K : klind(Ak)
Solution:
Let A ~ M (D). Write Dy ~ M,(D’) for some division algebra D’. Let K’ be a mximal
subfield of D’. Note that [D'] = [Ak]|. Then K’ splits D’ and hence Ax. Moreover

[K': k*> = [D': K| = ind(Ag)*
ind(Ag) = [K': K]

Now
A@k K/ ~ A@k K@K K/ ~ Mt(K/)
By the previous problem 11(d),

ind(A)/[K": k]
= ind(A)/[K': K|[K : k]
= ind(A)/ind(Ax)[K : k|

(c) If ind(A) and [K : k| are relatively prime, then ind(Ag) = ind(A); and if A is also a
division algebra, then so is Ag.
Solution:
Follows from (a) and (b).

13. Let A and B be finite dimensionalcentral simple algebras over k. Let K /k be a finite field
extension. Prove the following facts:

(a) If [A] = [B], then exp(A) = exp(B)
Solution:
This is easy to see because A®™ splits iff D®™ splits where D is the division algebra in
the class of A in Br(k).

(b) exp(Ax)/exp(A)
Solution:
Let n = exp(A). So (A)®" splits. But (Ax)*" = (A, K) QK (A, K) -+ Qk (A Qy
K) ~ (A)®" @y K ~ M,.(K). So exp(Ay)/exp(A).

(c) exp(A)/[K : klexp(Ak)
Solution:
Let exp(Ak) = n. So (Ax)®" splits. So (A®™)k splits. This implies [K : k] splits A®™.
By 11 (d), this implies ind(A®")/[K : k]. Since exp()/ind(), exp(A®™)/|K : k] i.e.,
(A®™)IK:E] gplits. Therefore exp(A)/n[K : k|.

(d) If ind(A) is relatively prime to [K : k], then exp(Ax) = exp(A).
Solution:
ind(A) relatively prime to [K : k| < exp(A) relatively prime to [K : k] since ind(A)
and exp(A) have same prime factors. Now the result follows from (b) and (c).



(e) exp(A ® B) divides the lem of exp(A) and exp(B).
Solution:
Let n denote the Icm. Then (A ® B)®" ~ A®"™ @ B®" which is split. This means that
exp(A® B)/n.

(f) exp(A®™) = exp(A)/n where n is the ged of m and exp(A).
Solution:
Let exp(A®™) = r. So (A®™)" = A®™ gplits. This means that exp(A)/mr. Here r is

.- . exp(A
the least positive integer such that exp(A)/mr. Sor = WG(MB(A))'

(2) If ind(A) and ind(B) are relatively prime, then ind(A ® B) = ind(A) - ind(B) and
erp(A® B) = exp(A) - exp(B).
Solution:
WLOG we can assume that A and B are division algebras. By Lemma 4.18 in the book,
A® B is a division algebra since their indices are coprime. Thus ,ind(A® B) = deg(A®
B) = deg(A)deg(B) = ind(A)ind(B).
By (e),

exp(A® B)/(cap(A)eap(B)) (1)

Let m = exp(A ® B). WLOG assume A and B are division algebras. Then[A ® B|™ =
[A]™[B]™ = 1. By (f), ind(A®™)/exp(A) and ind(B®™)/exp(B). So ind(A®™) and
ind(B®™) are relatively prime as well since exp() and ind() have same prime factors.
Now let [D] = [A]" and [E] = [B]™ where D, E are division algebras. Then from the
above equation,

[A]™[B]™

[D][E]
(D ® F]

1
1
1

But ind(D) and ind(E) arerelatively prime. So by Lemma 4.8 in the book, D ® E is
division algebra over k. But that is possible only when D = E = k. So A®™ and
B®™ are split i.e., exp(A)/m and exp(B)/m. Since exp(A) and exp(B) are coprime,
exp(A)exp(B)/m. This together with (3) finishes the proof.

14. Let A be a finite dimensional central simple algebraover k with ind(A) = p’n, p prime, j > 1
and p 1 n. Prove that there is a field extension K'/k whose dimension is relatively prime to p,
for which ind(Ag) = p’.

Solution:

WLOG we can assume A is a division algebra. Then by Theorem 4.19, A ~ D; ®; Dy ®y
.-+ @ D, where ind(D;) = p’ and ind(D,) = qj* where ¢, are distinct primes and p # ¢
for 2 <t < r. Now each D;, t > 2 contains a maximal subfield K; of degree ind(D;) by the
Centralizer theorem. Moreover K; splits D;. Let K be the composite of the fields in K in k.
Then [K : k] = n = [[}_,¢'. Sop{ [K : k]. Moreover, A® k = (D; ®;, K) @ (Da ®4
K)®j - @k (D, ®k K) = My(D; ® K). Butind(D;) and [K : k| are coprime. So Dy ®; K
is division algebra by 12 (c). Therefore, ind(Ax) = deg(D; @y, K) = deg(D;) = p’.

Generalized Quarternion Algebras

Let k be a field of characteristic not equal to 2. For a, biK™, let (%b) denote the vector space
of dimension 4 over k having the elements 1,7, j, k as a basis. Defining i* = a,j2 = b,ij =
—ji = k. This makes this into a k-algebra. Note that k> = —ab,ki = —ik = —aj and
jk = —kj = —0bi. The algebra (“Tb) is called the generalized quarternion algebra.

8



15.

(a)

(b)

Show that every 4-dimensional central simple algebra over £ is isomorphic to (%b), for
some a,b € k*.

Solution:

Let A be a 4-dimensional central simple algerba over k. Then A is either My (k) or a
division algebra. By Problem 16, M;(k) ~ (%) So assume that A is a division algebra.
Note that A contains a maximal subfield /K. Then by the double centralizer theorem, K
is a quadratic extension of k. Let K = k(y/a),a € k/(k*)?. Let o be the non-trivial
automorphism in Gal(K/k). Then by Skolem-Noether, there exists y € A such that
o(t) = yty~ 'Vt € K. Since 0? = 1, conjegation by 3? is trivial on K . Since K is
maximal, this implies y*> € K. Also o(y?) = y* = y* € k*. Lety®> = 3 € k* and
r? = a € k*. So the k-subalgebra in A generated by z and y is given by the following
relations

P =a,y’ =0

o(x) = yry ' = —x =yry ' = zy = —yx

The elements {1, z,y, zy} forms a basis for A and A ~ (a—]f)

Using this description of the central simple algebra , explicitly give its factor sets.
Solution:

If A ~ My(k), its factor sets are {a1, = a,1 = a11 = @y, = 1}. Now assume that A
is a division algebra. Then from the proof of the previous prolem we note that A ~ (‘%b)
where i2 = a,j> = b,k = ij = —ji. Moreover, a ¢ (k*)2. Then K = k[i] is a mximal
subfield of A. Let 0 € Gal(K /k) be the non-trivial element. Then o(c + id) = ¢ — id =
jle + id)j‘l. So we can pick z, = j and x; = 1. The the relation 12, = a;,%,,
TyT1 = Gy1%, and T,T, = a,,71, yields the following factor set

{a1,1 = Qg1 = Q1,6 = 10,0, = b}

16. Show that (%1) ~ My (k)

17.

Show that (%2) ~ (%2)
Solution:
The isomorphism is given by

Solution:
Since (1+1)(1 —i) = 1 —1 = 0, the ring has elements that do not have inverses. So it is not a
division algebra and hence split.

&

CLENUL
1—1
1 =]
g =t
kw— —k

18. Show that (“Tb) ~ (%) forany z,y € k*

Solution:



19.

20.

21.

22.

23.

The isomorphism is given by
a,b ax?, by?
=7
() = (=)

1—1

1 Tt
J=y]
k — zyk

Show that (“7) ®y K ~ (“7) fork C K.
Solution:
As a K-vector space (%2) hasbasis {1 ® 1,i® 1,j ® 1,k ® 1} The explicit isomorphism is

given by sending this ordered basis to the basis {1, 7, j, k} of (%~ 5.

Show that (a?) is a central simple algebra.

Solution:

Let us first compute its center Z. Suppose z = c+di+ej + fk € Z. Then the relation 1z = 21
yields e = f = 0, so z = ¢ + di. Using the relation jz = zj, we get d = 0, so that z € k.
Hence its center is k.

To show that it is simple, it suffices to show that (‘%’) @y k is simple. Now

b b
<a,7) Qp k =~ (%) by Problem 19
L.(va)*, 1.(vVb)?
= (R
1,1
~ (?) by Problem 18
~ My(k) by Problem 16
which is simple.
Show that =% ~ M, (k).
Solution:
Consider z = (1 +i+ j). Then z - (1 — ¢ — j) = 0, the algebra is split.
Show that (1) ~ (%) ~ My(k).
Solution: In (1 ), we have (j +k)(=j — k) =0andin (**), (i + j)(—i — j) = 0. So they
are isomorphic to My (k).

Show that A ~ (%2 ) is isomorphic to its opposite algebra A°P.
Solution: This is because exp(A) is either 1 or 2, so that [A]> = 1 in Br(k). Hence A ~ A°P.
The explicit isomorphism is given by

(@) o (hyr
1 1%
i —i%
jo =g
k — —k°P

10



24.

25.

26.

Show that (%’) ~ My(k) iff a € Ng(2), for some z € E = k(v/b) where Ng/;(2) is the
norm of z.

Solution:

<:Leta =u®—bv® = N(u+ vbv). Then (u+i+ jv)(u —i — jv) = u®> —a — bv> = 0. So
(42) =~ Ma(k)

underline=>: (%%) ~ M,(k). Then there exists 0 # z € (%2) such that z is not invertble.
Consider 2z where z = u — v — jw — kx is the conjugate of 2z = u + v + jw + kx. Then note
that N(z) = 2z = u* — av?® — bw? + ab = 0, since otherwise 2 will have an inverse given by
ZN(z). So we have

w—avt —bw?+ab=0
u? — bw? = av® — ab

u? — bw? = a(v? —b)

Now if b = v?, then k(v/b) = k and a = N(a) as a € k(v/b) = k. So assume b # v2. Then

u? — bw?
v2 —b
u+\/5w
v+\/5

a =

= N( )

Show that (%2) is a division algebra if and inly if b is not the norm of an element of k(1/a).
Solution:
This follows from Problem 17 and Problem 24.

Show that (%2) @ (%) = (42) @k (2552) = (%) @4 Ma(k)
Solutions:
The last isomorphism is clear from Problem 18 and 22. Let A = (“Tb) ®p (%°) and let

I=i®l
J=j®7
K=IJ=k®j
I'=12y
J =ik

K'=IJ=—c(i®i)

Consider the k-linear map

a,b a,c a, be c, —a’c

(=) (7)%(7)@%( 2 )
I—i®1
J—=ji®1
K—k®l
I'-1®1
J—=1®j
K'—1®k

11



27.

28.

It is easy to check that this map extends to k-algebra morphism. It is surjective since it maps
onto the basis of the codomain. It is injective since the domain is simple. Hence it is an
isomorphism.

Prove that an element of Br(k) has the form [(%b)] for some a,b € k if and only if it is in
Br(K/k) for some separable quadratic extension K /k.

Solution:

=: Let K = k(v/b). Then (%*) ®; K is split by Problem 18 and 22. Hence it is in Br(K/k).
<: Suppose [A] € Br(K/k), i.e., K splits A where [K : k| = 2. Then by Theorem 4.4, there
exists a central simple algebra of degree 2 (i.e., dimension 4) in the class of A which contains
K as a maximal subfield. But every central simple algebra of dimension 4 is isomorphic to

(“Tb) for some a, b by Problem15(a). Hence [A] = [(‘%’)]

Power Norm Residue Symbols:

(Reference: Milnor’s Algebraic K-theory, Chapter 15, “Power Norm Residue Symbol” and
Grayson’s “On K -theory of fields”) Let F' be a field containing a primitive nth root of unity w.
For a,b € F*, let A,(a,b) be the F-algebra of dimension n? which is generated by elements
x and y which satisfy 2" = a, y" = b and yr = wzxy. A basis for A,(a,b) consists of
{z'y? : 0 <i,j < n}. Check the following:

(a) A,(a,b) is central simple over F' and thus gives a function
a,: F* x F* — Br(F)

Solution:

Let > ¢;jz'y’ be in the center. Then (Y ¢;;a'y?)x = (3 ¢;;a'y?) if and only if ¢;j =
0V5 > 1. Similarly, (3 ¢;a'y? )y = y(3_ ¢i;x'y?) if and only if ¢;5 = 0Vi > 1. Hence
the center is F'. Now let I be a non-zero two sided ideal in A, (a,b) and let 0 # o =
> cix'y? € I. Suppose ¢ # 0. Then r %ay~" € I has a non-zero constant term. So
WLOG we can assume that cog # 0 in a. Let

T,, T, : Au(a,b) = A,(a,b)

Ty, : 2z xzx

T,z yzy !

Then T,(z'y’) = w2y’ and T, (z'y’) = w'z'y!. So B = (T, — w)(T, — w?) -+ (T}, —
w" M has no 2y’ term where j > 1. Hence WLOG assume that « has no term involving
y. now for suchan o, v = (T, —w) (T, —w?) -+ (T, —w" HNa = (1—w)(1—w?)--- (1—
W V) egy = nege # 0 (Since F has primitive nth root of unity, n # 0 in F).

(b) The function
a, : F* x F* — Br(F)
(a,b) — A,(a,b)
satisfies the following:

i. ay(a,bc) = a,(a,b)ay(a,c)
Solution:
We will first prove the following lemma:
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Lemma 7. Let A be a central simple algebra of dimension n* over I and let x € A
be an element which satisfies a polynomial equation over F of the form

fl)=a"+ " 4+ 0,1 =0

but no equation of smaller degree. If f(x) splits into distinct linear factors over F,
then A is siomorphic to the matrix algebra M, (F).

Proof. The subalgebra of A spanned by powers of x is clearly isomorphic to the
quotient ring F'[x]/(f(x)). By the Chinese Remainder theorem, F[z]/(f(x)) splits
as a Cartesian product of n copies of F'. Hence it contains mutually orthogonal
idempotents eq, es, - - - , €, where

Therefore A splits as a direct sum
A~elAD e Ad - - DeA

of right ideals. Since A ~ M,.(D) for some division algebra D, every simple right
ideal in A is given by a row vector in the matrix representation of A with the rest of
the rows zero. So A decomposes as direct sum of r simple right ideals. Thus n = r

and hence degD = 1 = D = F. Therefore A ~ M, (F). O
Using this lemma we proceed as follows. Consider A, (a,b) @ Ay(a,c). Let
X'=z®1
Y=yl
=YX =yrol=wry®1l=wX'Y’
X=1®«z
Y=1®y

=YX=10yr=w(l®zry) =wXY
= X"=a,Y"=b0X"=0a,Y"=c¢
Moreover, X'X = XX' X'V =YX XY =Y'X,YY' =YY
Let B’ be the subalgebra generated by X’ and Y'Y". Let B” be the subalgebra gener-
ated by X’7'X and Y. Then the generators of B’ and B” commute. We then have a
map
®: B ®B"— A,(a,b)® A,(a,c)
X' ®1— X'
YY®1—=Y'Y
1@ X' X = XX
1Y =Y
Note that B’ ~ A, (a,bc) and B” ~ A,(1,¢c). So B’ @ B” is simple and hence ® is
injective. By dimension count, it is surjective. So ® is an isomorphism.
= A,(a,b) ® Ay(a,c) ~ A,(a,be) @ A,(a,c)
~ A,(a,be) @ M, (F)
= ay(a,b) ® a,(a,c) ~ a,(a, be) in Br(F)
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ii.

1il.

Remark: By observing that A -1(a,b) ~ A, (b, a), we can also show that a,(a, b) ®
ay(c,b) ~ ay(ac, b) in Br(F).

a,(a,b) = ay(b,a)™?

Solution:

First we prove the following lemma.

Lemma 8. Let £ = w' where i is relatively prime to n (so that £ is another primitive
n-th root of unity), then

ag(a,b)’ = a,(a,b)
Proof. The isomorphism is given by
Ay, (a',b) — Ay(a,b)
T2
yr—=y
O
Since ag(a’,b) = a¢(a, b)" by (ii), we have a,(a,b) = a¢(a,b)’ = a,i(a,b)". Now
ay-1(b,a)™t = ay (b, a)
ay(a,b) = a,-1(b,a) = a,(b,a)™*
ay(a,1 — a) = 1 (Steinberg identity)

Solution:
We will first prove the following lemma:

Lemma 9. Let x,y be arbitrary elements in a ring satisfying yx = cxy where c is in
the center, then

ZL""y an znz

where
bi'(c) = b () + 05 ()
Moreover,
n fn(c)
O F O
fole) =1, fule) = (e = 1)(¢* = 1) -+ (c" = 1)
Proof. By induction on n. Clearly true for n = 1. Assume that the formNow

(z+y)" = (x+y)(z+y)"!

n—1

= (@ +y) Ot )a'y™ )

1=0

where

So the coefficient of 2'y" " is ¢'b!" ' (c) + b '(c). Hence

bj(c) = c'b;~(e) + b (c)

— fn-1(c) n fn-1(c)
file) fu1-i(c) ~ fimi(e) fu-i(c)
fa(c)

"~ () fail0)
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iv.

Vi.

Now I will prove that a,(a,b) = 1 whenever a + b = 1. ConsiderA,(a,b) where
a+b=1. Then

(x +y)" = 2" +y" by Lemma 9 since b} (w) = 0 Vi
=a+b=1

Since x+y satisfies the polynomial 2" = 1, that splits completely in F' (as F’ contains
primitive n-th root of unity) and no other polynomial of smaller degree over F', we
conclude by Lemma 7 that A, (a, b) ~ M, (k) i.e.,a,(a,b) = 1.

ay(a,—a) =1

Solution:

Consider A, (a,—a) generated by z,y subjected to 2" = a,y” = —a,yr = wry
where w 1s a primitive n-th root of unity. So

a:_ly = wyx_l.

Now

So the element yz~! satisfies a polynomial of degree n over F' that splits com-

pletely over [’ and no other polynomial of smaller degree. Therefore by Lemma
7, ay(a, —a) = 1.

a,(a,b)" =1

Solution:

First observe that a,,(a, b)” = a,(a,b™) by (i). Now the result follows from this and
Lemma 7.

Further, a,, = 1 iff a is a norm from F(/b).

Solution:

Let K := F({/b) ~ Fly]/(y* — b) C Au(a,b). Suppose a = Ng/p(z) for some
z € K. Consider the map

O A1) — Au(a,b)

1

Tz T
y—=y
This extends to an F-algebra morphism because (27 'z)" = L7 = 1. and

Nr/r(z)

y(z7'w) = 27 'yz = 27 'wry = w(z7'2)y. The map ® obviously /has an inverse. So
it is an isomorphism. This gives a(a,b) = a,(1,b) = 1.

The proof of the converse follows along the one in Milnor’s book on ”Algebraic K-
theory”, Chapter 15. Sippose A, (a,b) ~ M, (F). Then, A,(a,b) =~ Homp(V,V)
for some n-dimensional vector psace V' over F.Thus the genrators z,y of A,(a,b)
correspond to linear transformations X and Y of V. The minimal polynomial 4™ — b
of Y has degree n. Hence we can choose a basis vy, vo, - -+ , v, for V' so as to put Y
in ”companion matrix”” normal form. In other words,

Y(Vi) = Vigr Vi <n, Y (v,) = bV;
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(So the rational canonical form of Y has one block). Consider the - linear transfor-
mation

Homp(V,V) — Homp(V,V)
2= Ty(Z)=YZY !

The element Z defined by
Z(Vi) = w'V;

is clearly an eigen vector of Ty with eigen vector w™!. Since the w™! eigen space is
spanned by the elements X 1, X 1Y, ...  X~1Y"~1 it follows that we can write

Z=Xf(Y)
for some polynomial f. Now
Z"(Vi) = (W)"V; = Vi Vi
So Z" = I. This yields,
XWX TfY) - XTH(Y) = f0Y) f(W?Y) - f@"Y)X " =1

= [[f@Y)=X"=al
=1

Now consider the extension field F'(n) where " = b. Mapping Y to 7, proves that

n

[[fwn)=a

=1

If F'(n)/F has degree n, then clearly this product is the norm of f(n). If F'(n)/F has
degree d,

d

a= H o' (f(wn) f(w?n) - f(w"/dn)) where o' (1) = (wn/d)in

=1

a = N(f(wn)f(wn)- - fw™)).

29. An involution of k-algebra A is a k-module automorphism ¢ : A — A such that ¢(zy) =
o(y)o(x) and ¢*(z) = x Vo, y € A.

(a) Show that if there is an involution of A, then A? ~ A.
Solution:
The isomorphism is given by

A— AP
a— ¢(a)”?
ab = ¢(ab)” = (¢(b)p(a))” = d(a)”(b)”

(b) Find involutions of the k-algebras M, (k) and (“Tb), thus concluding that M,, (k) ~ M, (k)°P

and thus (%) ~ (%2)er,
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30.

(c)

(a)

(b)

Solution:
The involution on M, (k) is given by

¢ : M, (k) — M, (k)

A AT
The involution on (%2) is given by
a,b a,b
¢ (7) — (7)
1+ —1
J= =]
k— —k

Let A be a finite dimensional central simple k-algebra. Prove that if there is an involution
¢ of A, then [A]?> = 1 in Br(k). Deduce that [A]* = 1 for every quarternion algebra.
Solution:

From (a), if there exists an involution on A, then A ~ A%. But [A%] = [A]~! in Br(k).
The rest follows.

Let £ C K be a finite separable field extension and let Lbe a splitting field for K relative
to k (i.e., any irreducible polynomial in k[x] which has a root in K splits completely in
L). For example, L could be an algebraic closure of k, or if K /k is Galois, then L could
be K. Let 0y, 05 - - - 0, be the distince k-algebra maps form K to L andleto : K — L"
be the maps with components o4, - - - 0,,. Let o : K — L" be the unique L-algebra map
extending o.

O'LIK®kL—>Ln
r® avr ao(r)

Prove that o, is an isomorphism. Thus the k-algebra K “splits completely” when the
scalars are extended to L.

Solution:

Since K/k is separable, by primitve element theorem, there exists & € K such that
K ~ k(a). Then K ~ k[x]/f(x), where f9x) is the minimal polynomial of . Note that
ifa = ayg,as,- -+, a, are the distinct roots of f(x) and since L contains all the roots, then
the distinct embeddings o;isgivenbyo;(a) = «; Vi = 1,-- - n. In particular, the number
n of distinct embeddings of K in L is equal to the degree of f(x) which is [K : k]. It is
now clear that o, is an isomorphism. In fact, it is given by the following composition of
isomorphisms

o

K @ L = klz]/f(z) ®x L = Llz]/f(z) = &, Llz]/(x — o) = @}, L
t®ar (Z ') ®a Z ac;xt (Z ac;al Z acal, - ,Z ac;al )
= (aoy(t),aoq(t), -+ ,aoy,(t))
=o,(t®a)

Let K and L be as in (a). Show that if D is a central simple k-algebra with maximal
subfield K, then L splits D.
Solution:

This is clear since a maximal subfield of D splits D and D @y L ~ D ®; K Q@ L.
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(c) If L spits D and if K is a maximal separable subfield of D, does L split K relative to k
ie.,is L ®; K ~ L" where n = [K : k.
Solution:
No. Let K/k be an extension of degree n > 2. Then from Theorem 4.4 from the book,
M, (k) contains K as a maximal subfield. Now take D = M,,(k) which is already split.
Now let L = k. Then L @, K ~ k ®y K ~ K % L".

31. Another Proof that Br(K/k) ~ H*(Gal(K/k), K*):
Let K /k be a Galos extension with Galois grop G. The fact that Br(K /k) ~ H*(G, K*) boils
down to the fact that for factor sets @ and b, [(K, G, a)][(K,G,b)] = [(K, G, ab)]. The roof (of
chase) given in the text exhibits a “magic module” on which both (K, G, a) ® (K, G,b) and
(K, G, ab) act. A more direct approach is to choose a basis for the first two algebras which give
cocycles a and b respectively and then try to find a corresponding basis for their tensor product.
Their tensor product is not unfortunately, (K, G, ab), but rather is matrices over this ring. Hence
we must find an appropriate subring of the matrix ring M, ((K, G, ab)) ~ (K, G, ab) ®; M, (k)
which is isomorphic to (K, G, ab). This is where Exercise 30 comes in: we now want to list

explicitly the idempotents (and their properties) from that exercise. Complete the following
outline, which gives the classical” proof that Br(K/k) ~ H*(G, K*).

(a) Prove that it if A is a central simple algebra over k and if e # 0 is an idempotent element
in A, then [A] = [eAe] in Br(k).
Solution:
Let A ~ M,(D) . Since e is idempotent, ¢ is diagonalizable with 1’s and 0’s along the
diagonal. So there exists an invertible matrix P € A such that PeP~! is diagonal with
I’s and 0’s along the diagonal. After conjugating with a permutation matrix, we assume
that

-1 -

PeP ™' = 1

0

with r 1’s along the diagonal Now note that as k-algebras, eAe ~ PeAeP~!. The explicit
isomorphism is given by sending eae to PeaeP~! Va € A (It is easy to check that this
map is infact a k-algebra isomorphism). So we get

eAe = PeAeP™ = (PeP ') PAP ' (PeP™)

D D--- D 0 0---0

[e)
(@)
(@)
[e)
[a)
(@)

Thus [A] = [D] = [eAe] in Br(k).
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(b) Prove that
K @, K >~ @pcgeqr(K ®p 1) = Boeges (1 @ K)

where e, are orthogonal idempotents such that e, (z ® 1) = e,(1 ® 0(2)) Vz € K.
Solution:

Since K'/k is separable, K = k(a) for some a by primitive element theorem. Let p(z) =
" + a,_12"1 + - -+ + g be the minimal polynomial of a over k. Now since K /k is

Galois,
K®kK2K[x]/p(x):K[x]/(x—cl)...(m—cn)zé[(
i=1
Foro € G, let
bom=0"@1+a" ' ®c(a)+...+1@0(a)".
Now {1,0(a),...,o (a)m_l} is linearly independent over k for each fixed o, where

0 <m < n — 1since p(x) is the minimal polynomial for o(a).
Claim: {b, 0, by 1 - - - bsn—1} is independent over k in K ®, K.

Proof. Suppose aobsg + a1bs1 + ... + a_1byn—1 = 0 for some ap o, ... q,—1 € k.
Then,

(@' @1 [1®apa]+ (" ?®1) [1 @ (2 + ap_10 (@))] + ...
4 (@®1)(1® (a1 + a0 (a) + ...+ ap10 (a)"_Q])
+(1®1)(1®[ag+aro(a)+...+apq0(a)"']) =0

But S = {a'®1:1 <4 <n— 1} form a basis overl ® k. So S islinearly independent.
Hence we get

ap + g0 (a) + aso () 4 ...+ apq0 (@) =0

But {o(a) : 1 <i < n — 1} is linearly independent. This implies o, vy, -+, a,—1 = 0.
Hence {b,, : 1 < m <n — 1} is linearly independent over k in K ®; K. ]
Now,

(a®1-1®0(a)) by =a""'®1-1®0 (a)™
So,

(a®1—-1®0(a))(bon-1+ An-1byn—2+ ...+ aibs)
=pla)@1l—a®l)—(1®p(c(a)) —1®ay) =0

Since {by ., : 1 < m < n—1}islinearly independent, by ,,—1 +—105 2+ . .+ 1byo #
0. Therefore t, = a ® 1 — 1 ® o(a) is a non-zero zero-divisor in & ® K. Consider the
following isomorphism

¢:K®kKi>éK
=1
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Lete; = ¢~ '(r;) Yo € G, where r; = (0,0,---,1,--+,0) € B, K is the vector with
1 at j-th position and zero everywhere else. Then e; is a non-trivial minimal idempotent
in K ® K (An idempotent e is minimal if whenever e = e; + e, for some commuting
idempotents e; and e, then e = e; or e = e3). Now since %, is a zero divisor in K ® K,
there exists a minimal idempotent e, € K ® K Vo € G such that

esty =0
=e,(a®@1—-—1®0(a)) =0
=e,(a® 1) =e,(1®0(a))

Since {1,a,a?,---a"'} form a basis for K /k, for any z = 3" c;a’ € K, we have

e (2@ 1) =e, [(co+cra+ ca® + ... cpu1a™) @ 1]
n—1
— Z Ci€s (al ® 1)
=0

=> ceg(a® 1)

=> ciles(a® 1)

=> e, (100 (a))

=Y e, (1 ® 0 (a)i)
— e, |10 (D co(@))]

=e, (1®0(2)) (2)

Now I claim that e, # e, if 0 # 7. Suppose not. Then e, = e, for some o # 7. Then
since e,(a® 1) =e,(1®0(a))and e (a ® 1) = e, (1 @ 7(a)), we get

es[1® (o(a) = 7(a))] =0

But s = o(a) — 7(a) # 0 and hence 1 ® s is invertible. This implies ¢, = 0, which is
contadiction. Thus we have shown that e, # e, if 0 # 7 Vo, 7 € G.

Let S = {e, : 0 € G}. Then |S| = |G| = n. But K ® K ~ @, K has exactly n
nontrivial minimal idempotents given by the coordinate vectors (0,0,---,1,0,---0). So
we conclude that if ¢ # 7, e,e, = 0. Hence S is a set of orthogonal idempotents such
that ) ° . e, = 1. This yields

KoK=() e)(K®K)

ceG

:ZeU(K@)K)

ceG

~ @eU(K@) 1)

oeG

~Pe, (10 K) by (2))

oceG
(c) Use parts (a) and (b) to prove that for factor sets a and b,

(K,G,a) @ (K,G,b) ~ (K, G, ab) @ M, (k)
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Solution:

Let R = (K,G,a) ® (K,G,b). Since R O K ® K, part (b) gives e, € R as above.
Let e = e;. Choose a basis {%, },e¢ and {y, },cc for (K, G, a) and (K, G, b) which give
cocycles a and b respectively.

Lemma 10. For every 7 € G, we have
1@y )e(l®y ") =e
(r7' @ e(z, @ 1) = e,

Proof. First note that (1 ® y,)e(1 ® y') is a nontrivial minimal idempotent since e is.
Since K ®; K has exactly n nontrivial minimal idempotents given by {e, },cq, (1 ®
y-)e(1 ® y=1) must be one of them. Now note that e, is the unique minimal idempotent
such that

efla®l)— (1®o(a))] =0
forife,[(a®1) — (1 ®0o(a))] =0, then
e,(1®7(a)=€(a®1)=¢€,(1®0(a))
=e(1®(r—0)(a))=0

If 7 # o, them 7(a) — o(s) is invertible which yields e, = 0, a contradiction. Hence it
suffices to show that

loy)e(ley ) a®l-1®7(a) =0
Writee = Y | a; ® b;. Then

(1oy)e(ley) =) aerb)(loy,) 1oy ")

=> a;@7(b)
Therefore
1@y )e(ley Y aol-1@7() =) ae7b)eel -1 7(a)
:¢T(( ®1—1®a)):¢7(0):0

where ¢, : K ®; K — K ®j, K is the k- algebra homomorphism given by ¢, (a ® b)
a ® 7(b). This proves (1 ® y,)e(1 ® y=1) = e,. The proof for (7! ® 1)e(z, @ 1) = e,
1s similar.

Let w, = 2, ® y,. Now
wee = (2, 1) (1R ys)e= (1, 1) e, (1 ®y,) = ew,
Observe that u, = ew, = w,e = ew,e € eRe is invertible with inverse ewszgma We
have
UglUy = EWGEW; = EWsWy
= e(T4 @ Yo ) (77 @ yr)
= 6(1‘01‘7 ® yG?JT)
- e(aa Lor @ ba Tyo'T)
(aUT ® bO’T)("'EUT ® yO’T)
=e(ayr @ 1)e(byr ® 1)(Tor ® Yor) by definition of e = e,
(
(

=€

= €U, TO'T®1)w0'T

€\Qo,r 07-@1)61007-
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Therefore,

UsUr = e<ao',7'ba,7' ® 1)“07’ 3)
Now for z € K,

(o ® yo)e(z @ De(z,' @y, ")
(Tor @ Yo )e(z,' @y, ")
= e(o(z)zs @ Yo)e(z, @y, ")

uge(r ® 1)u;?

(&
€

Thus,
uge(z @ Nu,t =e(o(z) ® 1) 4)

Lemma 11. K ~ ¢(K ® 1) as G-modules where the G-action on e(K ® 1) is given by
g-e(c®l)=ce(o(c)®1).

Proof. Define

oK —e(K®1)
c—e(c®l)

It is easy to check ¢ is an isomorphism of k-algebras as well as of G- modules. [
Lemma 12. {u, },c¢ is linearly independent over e(K ® 1).

Proof. Suppose Y .. e(a, ® 1)e(r, ®y,) =0in R = (K,G,a) ® (K,G,b). Then

> elar @ 1) (2, @ 1)(1@y,) =0

oeG

But {1 ® y, } form a basis for R as (K, G, a) ® 1-module.

= e(a, ® 1)(z, ® 1) =0Vo € G
e(a, ®1) =0

since x, ® 1 is invertible. O
From Eqn (3), (4) and Lemma 12, we conclude that
eRe D (e(K®1),G,e(ab® 1)) (5)

with basis {u }req-
Lemma 13. eRe C ) . e(K ® 1)u,.

Proof. Since {z,} and {y,} span (K, G,a) and (K, G, b) over K resectively, {z, ® vy, }
span R over K ® K. So any element r € R can be written as

r= Z (ar ®br) (25 ® yr)

o,TeG
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Now

ere = Z e(a, @ b,)(r, @ 1)(1 @ y,)e

o,7e€G

= Z (a, @ br)e(xy, @ 1)er (1 ® y,)

o,7eG

= Z (ag & bT)<$U ® 1)6067(1 ® y"')

o,7eG

But e, e, = 0 for o # 7 by part (b). So

ere = Z e(ay ® bo) (26 @ Yo)

oeq
= Z(agbg ® 1)u,
So eRe is generated by {u, } over e(K ® 1).
= eRe C (e(K®1),G,e(ab® 1)) C eRe
where the last containment comes from (5). Therefore
eRe = (e(K®1),G,e(ab® 1)) ~ (K,G,ab)
By part (a), we finally conclude
[(K,G,a) ® (K,G,b)] = [R] = [eRe] = [(K, G, ab)]

32. Norms and Traces:
Let R be a finite dimensional algebra over a field k. If x € R, then left multiplication by x
is a k-endomorphism of R. The norm of this k- endomorphism, i.e., the determinant of the
associated linear transformation, is called the norm of z, denoted by Np/(z) or N(x) if the
underlying algebra is understood.
Let R be a finite dimensional algebra over a field k£ and let x € R. Show that the following
properties hold.

(a) N(z) = 0iff x is invertible.
Solution:
Define

¢: R — Endg(R)
T Qp i1 = ar
where for an element x € R, ¢, denotes left multiplication by x. Clearly ¢ is a homo-

morphism of k-algebras. Note that N (x) = det(¢,) and hence N (z123) = det(¢r,z,) =
det(py, dry) = N(x1)N(x2). So the norm map

N:R—k

is multiplicative. Therefore if x is invertible, we have 1 = N(zz™!) = N(2)N (2 1).
This implies N (z) # 0.

Conversely suppose N (z) # 0. Then z is not a zero divisor in R as N() is multiplicative.
Now the result follows from the following lemma.
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(b)

(©)

(d)

(e)

®

Lemma 14. In an Artinian ring R, an element x € R is invertible if it is not a zero divisor.

Proof. Let x € R be an element that is not a zero divisor. Consider the descending chain

of ideals (z) D (z?) 2 (z®) D ---. Since R is Artinian , there exists an integer n such
that (") = (z"*1). So 2™ = ya™*! for some y € R. This implies 2" (yx — 1) = 0. But x
is not a zero divisor, so yx = 1 and thus x is invertible. ]

N : R* — k* is a homomorphism.

Solution:

With notations as in (a), this follows from the fact that ¢ is a homomorphism and deter-
minant is multiplicative.

N(a) =a™ifa € k where n = [R : k.

Solution:

This is because for any basis of R, the matrix ¢, is diagonal with a along the diagonal.
T : R — kis k-linear where T is the trace map i.e., T'(z) = Tr(¢,).

Solution:

Let a,b € k and z,y € R.Then it is easy to see that Qozity = PPy + Opd,. Since
¢, and ¢, are diagonal matrices with a and b along the diagonal respectively, we have
T(az +by) = Tr(dusssy) = Tr(@ads + duoy) = aTr(00) + bTr(0,) = aT () + 0T (y).

T(xy) = T(yx).
Solution:
This follows from the properties of trace of product of matrices.

T(a) = nafora € k.
Solution:
This follows from the fact that ¢, is a diagonal matrix with a along the diagonal.

33. Prove the following:

(a)

(b)

(©)

Norm and trace are invariant under extension of scalars. That is if S = Ry for a field K
containing k, then Vx € R

Ts/k(z) = Tryk(z)

This is because for = € R, left multiplication by (z ® 1) is the endomorphism given by
@1 € Endk(S) where ¢, is defined as in the previous problem (which is multiplication
by x in R). Therefore Ng/x(x) := Ng/x(x ® 1) = det(¢, ® 1) = det(¢,) = Np/i(x).
Similar argument shows Ts/x (x) = Tr/x().

Norm and trace are compatible with direct products i.e., if R = R; X R,, then

NR/k(fEth) = NRl/k(Il) : NRg/k(xQ)TR/k(xlny) = TRl/k(fL'l) + TRg/k(x2>

Solution:

This is because the linear transformation ¢, in R induced by left multiplication by x =
(71, z3) is given by the direct sum ¢, ® ¢,,.

If v € J(R), then N(1+ x) =1 and T'(z) = 0 where J(R) is the Jacobson radical of R
Solution:

Since x € J(R), x is nilpotent. So T'(z) = 0. Now choose a k-basis of R such that the
matrix [¢,] with respect to this basis is in rational canonical form. Since the characteristic
polynomial of ¢, is t" where n = [R : k|, [¢,] has zeros along diagonal entries.

N1+ 2) = det(1 + [6.]) = det([ga] — ADrer = (~1)"t" ey =1
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(d) In the notation of Exercise 30,

Ng () = H oi(x)

Let p(z) be the minimal polynomial of z € K of degree m. Let F' = k(x), so that [F" :
k] = m. Let [K : F| = n so that [K; k] = mn. Since K is separable, K = k(«) and the
number of distince embeddings of iK' < L in its splitting field is equal to the degree of the
minimal polynomial of « over k& which is equal to mn. Let ¢(z) be the minimal polyno-
mial of o over F. Then deg q(z) = [K : F| = n. Note that {1, x, - - - 2™ '} forms a basis
for Foverkand {1,2,--- ,2™ Y a,az, - ,az™ -+ a" L a" g, .o o™ g™}
form a basis for K /k. With respect to this basis, multiplication by x is an n x n block
diagonal matrix of the form

c 00 --- 0
o C o0 --- 0
[%]: : -
o o o0 --- C

where C' is the m X m companion matrix for p(z). Now N(z) = det(¢,) = det(C)".
Since the characteristic polynomial of the companion matrix of a polynomial is the poly-
nomial itself, we see that the characteristic polynomial of C' is p(z) and hence its deter-
minant is equal to the constant term p, of p(z) which is nothing but the product of its
roots i.e., po = [[j~, 7j(z) where {v;(z)}7, are the (distinct) roots of p(z). Here v; give
distinct embeddings of I into L and hence are elements of G/ H where H is the subgroup
of GG that fixes F'. Now

N(x) = det(C)"

Similarly

Tkp(x) =n-Tpy = n(z v5(x))

j=1

=> ) ()

j=16€H

(e) If R = M, (k), then



Solution:

Let e;; denote the matrix with 1 at the (7, j)-th entry and 0 everywhere else. Then the set
{e;j : 1 < 4,5 < n} forms a basis for M, (k). It is now easy to see that with respect
to some ordering of the basis, the linear operator associated to left multiplication by a
matrix z is just n? x n? the block diagonal matrix with = along the diagonal. Hence
N(z) =det(z)" and T(x) = n - Tr(x).

34. A bilinear form B(z,y) on a finite dimensional vector space V' over a field kis a function
B :V xV — k which is linear as a function of one variable when the other is kept fixed. B is
said to be non-degenerateif the following equivalent criteria hold:

(a) If z € V satisfies , B(x,y) = 0Vy € V, then z = 0.

(b) Themap f :V — V* = Homy(V, k) defined by f(z)(y) = B(x,y) is an isomorphism.

(c) For any basis {ey, - - - e,} of V, the matrix [B(e;, e;)] is invertible.

(d) For some basis {ey, - - - e, } of V, the matrix [B(e;, ;)] is invertible.
Show that the four conditions are equivalent. Recall that a finite dimensional algebra R over
k is called separable over £ if its center is a product of separable field extensions of k. Prove
that if char(k) = 0 or if R is commutative, then R is separable iff the bilinear form B(z,y) =
Tr/k(zy) is non-degenerate.

Solution: First I will show that the conditions are equivalent.
(a) = (b): By (a) for a given z, B(x,y) = 0 Yy implies x = 0. This means that the map

f:V —=>V*=Homi(V, k)
v = f(2)(y) = B(z,y)

is injective. Since dimV = dimV'*, f is surjective and hence is an isomorphism.

(b) = (c): Suppose the matrix M = [(B(e;, e;)] is not invertible for some basis {e;}. of V.
Then the rows of M are linearly dependent over k. So there exists ¢1, ¢, -+ , ¢, € k, not all
zero, such that

ZCjB(@j, €i) =0V
J
= B(Z Cj€j7€i) =0V
J
= B(Y_ce,y) =0y

= (> _cje;) =0

This means that f is not injective and hence is not an isomorphism.

(c) = (d): Trivial.

(d) = (a): Suppose [B(e;, ex)] is invertible for some basis {e;}. Let x € V be such that
B(z,y) =0Vy € V.Writex = 3 _; cje;. Then

B(Z Cj€j, 61') =0V
J

= chB(ej,ei) =0V
J
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This means that the rows of [B(e;, e;)] are linearly dependent unless ¢; = 0 Vj i.e, z = 0.
Now I will prove the second part of the problem.

Remark:To do this we need the additional hypothesis that R is also semisimple because finite
dimensional k-algebras whose center is a product of separable field extensions of £ need not
be semisimple. Here is an example:

Example: Let R = k[z,y]/(2" = 0,y" = a,yzr = (xy) where a € k,( € k* is a primitive n-th
root of unity.Clearly R is finite dimensional k-algebra that is not semisimple as it has nilpotents.
Moreover note that the set {z'y’ }o<; j<n—1 forms a basis for R. Let us order the basis as
(11,71) > (i2,72) if (i1 > 42) or (i; = iz and j; > jo). With respect to this ordered basis, it
is now easy to see that Tr(z"'y’) = B(z,z'y’) = 0Vi,j. So B(z,v) = 0 Vv € R. This
implies that B(v, w) = Tr(vw) is degenerate. Therefore the assumption that R is semisimple
is necessary for the statement of the problem to be true.

So we will proceed with the additional assumption that semisimplicity is part of the definition
of a separable algebra.

=: Suppose R is separable (and hence semisimple by the above Remark). So R ~ R; x Ry X
--- R,, where R; is a simple k-algebra. Let K; be the center of ;. Then it is easy to check that
K; is a field. The center of R is thus K; x Ky X --- X K,,. Since R is separable K;/k is a
separabe field extension . Since R is finite dimensional, K /k is a finite dimensional separable
field extension. By Structure theorem for simple rings, R; ~ M, (D) where D; is a division
ring with center K;. Let

B : (Rouk)x (RQyk) =k
(v®a,w®b) — abB(v,w)
be obtained by extending B to k linearly. Then B’ is a bilinear form on the k-vector space

R ®k_E. Note that if {e;,--- , ¢} is abasis for R, then {¢; ® 1,---¢; ® 1} is a k-basis for
R ®y, k. Moreover, for any two vectors v = > e; @ a;,w = Y €; ® b; € R ®y k, we have

B'(v,w) = B/(Z e; ® aj, Z ei ® b;)
—_ Z aibjB/(Q' ® 1, ej ® 1)

Z?]

= Z az-bjB(ei, 6]‘)
(2]

= aib;Trpi(eie;)

i
=) b Top(ei @ 1)(e; @ 1)
i

(where S = R ®;, k since trace is invariant under extension of scalars by 33(a))

_ TS/E(Z(ei ® a;) Z(ej ® b;) (since trace is linear by 32(a))

4 J

= Tz (vw) (6)

Lemma 15. B’ is non-degenrate iff B is.

Proof. This is easy to see because the matrix [(B(e;, €;))] is invertible iff [(B'(e; ® 1,e; ® 1))]
is. [

Now [(B'(e; ® 1,e; @ 1)] is invertible iff [(B’(fi, f;)] is invertible for any basis{ f;} of S over
k. But by (6), B'(fi, fj) = Ts/5(fif;)- So to show that B(e;, e;) is invertible it suffices to show
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35.

that the matrix [(B'(fi, f;))] = [(Tsz(fif;))] is invertible for some basis {f;} of S.

Remark 1. Suppose R ~ Ry X --- X Ry, then the matrix [(Tg5(f:;))| decomposes as direct
sum of m matrix blocks. So the invertibility of [(Tsz(fif;))] is equivalent to the invertibility of
each block. Hence , we can assume that R is simple. Moreover,

S =RQk ~ (R®K K) ®Qp k where K is the center of R

~ Ry (K @ )
~ R @ (®I_,k) since K/k is separable by hypothesis
~ PR Qg k ~ Mn(E)

Therefore to show invertibility of [(B'(f;, f;))], we can assume without loss of generality that

S = M, (k).

Consider the matrix [(T'(e;je,)] where e;; is the matrix in M, (k) with 1 at the (4, j)-th position
and zero everywhere else. Note that e;je,s 1s non zero and is equal to e;, if j = 7 and that
T(e;;) =n-Tr(e;;) by Problem 33(e) which equal n if i = j and 0 else. This means that with
respect to some ordering of the basis {e;; }, the matrix [(T'(e;;e,s))] equals nl. If char k = 0,
then this matrix is clearly invertible. If R is commutative, so is S. By Remark 1, we can assume
S = k whose associated bilinear form given by trace is clearly non-degenrate. Therefore we
are done whenever char k = 0 or if R is commutative.

Warning: This is not true if char k = p # 0, for Tr/;, = 0 where R = M,(k) by Problem
33(e).

(«=:) For the converse, suppose that R is not separable. Let C' be its center. Then C'is a finite
dimensional commutative k-algebra.

Lemma 16. C ®;. K has nilpotent elements for some field extension K /k.

Proof. Suppose C' has no nilpotents. So the Jacobson radical of C'is trivial. By Corollary 2.3
from the book, C'is semisimple. But C'is also commutative. So C' ~ K; x - - - x K, where K;/k
are fintie field extensions of k. By hypothesis, R is not separable, so K;/k is inseparable for
some ¢. Let a € K be an inseparable element and let K be the splitting field for the minimal
polynomial of a. Then C' ®; K O K; ®;, K D k(o) ®; K clearly contains nilpotents. O

Since C ®;, K is in the center of R ®;, K, we conclude that the center of S := R ®;, K contains
nilpotents for some field extension K /k. Let B’ : S x S — K be the bilinear form obtained
by extending K -linearly the bilinear for mB : R X R — k over K i.e., B (r ® a,r ® b) =
abB(ry,m2) = abTr/k(r172). Recall that by (6), B'(v,w) = Ts/x(vw) and by Lemma 15, B’ is
non-degenerate iff 5 is. Now pick a nilpotent ¢ in the center of S. Then B'(d,z) = T/ (dx).
Since 0 is in the center, dx is also nilpotent Va € S yielding T's/.(6x) = B'(0,x) = 0Vz € S.
So B’ and hence B is degenerate. We are done.

Let K be a Galois extension of £ with Galois group GG which is cyclic of order n. Prove that
Br(K /) = k* [Nigju(K7).

Solution: Given any class 7" € Br(K/k), pick a central simple algebra A of degree n in the
class (you can do this by Theorem 4.4 in Benson-Farb). Moreover K is a maximal subfiels of
Aand [K : k] = n. Fix 0 € G = Gal(K/k) a generator. By Skolem-Noether, there exists
z, € A such that

recx,t =o(c)Vee K
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36.

For j > 2, pick 7,5 = T,%y -+ Ty = x). Now 21 = z,n = z". Note that z; € C(K) = K.
Moreover,

T1Tei = Tyl = T A

By Proposition 4.8 in the book, {x, } forms a K -basis for A. So x; commutes with all elements
in A. So x; € k*. Picking a different x/ implies that

/
Ly = JZs
for some f € K*, so

oy =) = fo(f)--- 0" (f)al
= N(f)x

So z; and x differ by N(K™).

Now [A] = [(K, G, {a})], where the factor set {a} is given by a1, = a,1,a1, = z (this is
because 217, = a1,,%,) and a,i ,; = 1if 7, j # 0 mod n (this is because x,:x,; = T,i+;). Let
us call such factor sets "special’ and denote the set with a subscript s, i.e, by {a}s. This means
that for K'/k cyclic Galois, any element in Br(K/k) is represented by [(K, G, {a})] where the
factor set {a} is special. So there is a well-defined map

¢ : Br(K/k) — k*/N(K™)

(K. G {a})] > an
Suppose we have [A], [B] € Br(K/k) such that [A] = [(K, G, {a}s)],[B] = [(K, G, {b}s)].
Then note that the factor set {ab} is special since {a} and {b} are special. Since [(K, G, {ab};)] =
(K, G, {a}s)] @ [(K,G,{b}s)], we conclude that ® is a homomorphism of groups. Now I will
show that ¢ is am isomorphism.
Injecctivity: Suppose [(K,G,{a}s)] and [(K,G,{ab}s)] both go to the same element under

®.Then a,; = cby; for some ¢ € N(K*). Let ¢ = N(«), for some d € K*. Then we have a
k-isomorphism

(K, G, {a}o)] = [(K, G, {b}s)]zs — QYo

Surjectivity: Let r € k*/N(K*). Then we define A as follows. As a K-vector space,

n—1
A= @ K:L‘Uz‘
i=1

with algebra operation as follows
Tyilyi = Tgiti 1f 1,7 > 1
= TrZyi+j if i=0 orj:O
AT i = 0" (B) 2 0i T

Then [A] = [(K, G, {a})] where a11 = a1, = ao1 = 7 and a,i s = 01if ¢, j # 0. Clearly A
maps to  under ®. So @ is surjective and hence is an isomorphism.

Use the preceeding problem to give another proof of the Frobenius theorem that the only finite
dimensional central division algebras over R are R and H. Also give another proof of Wedder-
burn’s theorem that all finite division rings are commutative.
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37.

Solution:

Proof of Frobenius Theorem:

Any finite dimensional central division algebra over R is an element of Br(C/R) ~ C*/N¢/r(C*) ~
Zs. This proves the claim.

Proof of Weddernburn’s theorem:

Let D be a finite division ring with maximal subfield K. Clearly K is a finite field. Also the
center of D is F, where ¢ is a prime power. and K /F, is a finite extension so that K = F.
Since the maximal subfield splits a central simple algebra, D € Br(K/F,) = Br(F, /F) =
F?/Nr,, /p(IF;) by the previous problem. The result follows from the following claim.

Clalm T o/ Nr . p(Fyr) = 1.

Proof of the Claim: Let F,» = F,(a) and let p(¢) be the minimal polynomial of a. Then the
roots of p(t) are {a,a?,---a? " }. Moreover, the matrix M associated to left multiplication by

a is just the companion matrix of p(t). Therefore N(a) =det(M)=a-a* --a? " = a1 €

[F;. Observe that since a has order ¢" — 1, a T has order q — land hence N ( ) generates [F;.
Th1s proves the claim.

Cohomology and Applications:

Prove Proposition 4.11 from the book i.e., §% = 0.

Solution:

Let f € C"(G,M),so f : G" — M.

52(f)(91792, s ‘9n+2) =

n+1
g1 5f( *Gn+2) +Z )0 (g1, s Gigirts s Gnye) + (=1)"20F (g1, gui1)
C

B
Now it is easy to check that

n+1
A=g192f(93, ", gnso +Z )T (G20 it Gnr2) + (1) 0ig(g2, - gnra)

n+1
b= Z 1)'0f(g1, " gigis1, "~ s Gn+a)

~
B;

Let us compute each B;,

By = (=1)0f(9192, 95 , gn+2)

= (—1)[9192 : f(gz, T >gn+2) - f(919293>94> T ,9n+2)+
n+1

D T (192, 5 Gigin Gnsz) + (1) (192, gny1)]
=3
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For 2 <1 <n,
Bi= (=1)'6f (g1, giGit1 -+ Gnt2)

= (=1)'[gif (92, - » 9iGit1s - Gn2) +Zf (91, 1959541, Giiv1s " Gnt2)

+ (=) (91,92, 5 Gim1GiGis1s i) + Z (91,92, -+ 9iGix1Git2, -+ - Gn+2)
n+1

+ Z Flg192, - 2 9iGivns - 9595410, - Gna2) + (1" f g1, 92, 1 9iGivns -+ s Gnpr)]
J=t+2

Bn+1 == (_1)n+1(5f(gl> g2, 7gn+lgn+2)
-1
= (—1)n+1[91f(927"' s Gnt19n+2) Z 917"'9j9j+17 o Ont19n42)

+ (=1)"f(91," Gn—1, GnGn+19n42) + ( D™ f(gi, -+ gn)]

C=(=1)""25f(g1, , gnr1)

= (_1)n+2[gl : f(g27 e >gn+1) + Z(_l)]f(gla T 7gj.gj+17 e gnJrl) + (_1)n+1f(917g27 T gn)]
j=1

After painful suffering one can check that 6> = A + B + C = 0.

38. Let GG be a finite group and let M be a G-module. Show by a direct argument that every element
of H"(G, M) is annihilated by |G| for n > 1.
Solution:
Let f € H'(G,M) = 0f =0.
5f(g17 e 7gn+1) =0 v.gla Ct 5y Ontl

= g1f(92,  Gny1) + Z f(91, - GiGis1, -+ Gny1) + (‘Unﬂf(gla o, gn) =0

= (=1)"f(g1, -, 9n) = 91f(g2, " Gnr1) + Zf(91, - GiGit1s " Gntl)

Summing over all g, 1,

Z flgr, - Z g1 f(92, s Gnt1) Z Z f(g1 -+ 9iGit1, - Gnr1)

g’ﬂ+1€G gn+1€G gn+1EG i=1
(=D)"GIf (g1, gn) = Z g1 f(g2, s Gns1) + Z Z flgrs-, 9igiva, 5 Gnt1)
gn+1€G gn+1€G i=1
+ Z f(g1,92,°+ , Gngn +1)
gn+1€G
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39.

Let (g1, 92, gn-1) = D, e f(91:°  Gn-1, gn)- Note that

Z f(glaQQa o 'gngn—i-l) = Z f(gl7927 e 7gn) = h(glnga o 'gn—l)

gn+1€G gn€G

So we get,

n—1
(1" GIf (g1, gn) = gih(ga -+ 1 g0) + S (=1 hg1, -+ Gigisr -+ +g)
i=1

+ (_1)nh(917927 T 7gn71)

Try to understand the following argument, checking statements and filling in details as needed.
By Theorem 4.13, H?(G, K*) ~ Br(K/k) and hence classifies central simple algebras. By an
entirely similar argument, one can show that for a G-module M, H*(G, M) classifies exten-

sions

l-M-—-F—->G—=1

inducing the given G-action on M (See K.Brown, Cohomology of Groups). If M is finite and
| M| is prime to |G/, then note that

(a)

(b)

Multiplication by |G| is an automorphism of A and so induces an automorphism of
H?*(G, M).

Solution:

Since ged(|G|, |M]) = 1, there exists n, r € Z such that n|G| + r|M| = 1. For an integer
k, let ¢, denote multiplication by k£ in M. Then it is easy to see that ¢,, is the inverse of
¢|c|- In particular, ¢ is an automorphism of M .In fact, it is a G-invariant automorphism
of M. Now a G-invariant automorphism ¢ of M, induces an automorphism of H(G, M)
via

®: H*(G,M) — H*(G, M)
f—=dof

The above map is well defined because d¢ o f = ¢df and hence ® takes boundaries to
boundaries and co-cycles to co-cycles. Its inverse is given by f +— ¢~ Lo f.

Multiplication by |G| kills H?(G, M) by the previous problem. So the only possibility
is aht H?(G, M) = 0, that is there is only one extension 1 — M — FE — G — 1, the
split one. Put another way, if £ is a group and M is an abelian normal subgroup such that
GG = E/M has order prime to |M]|, then E is a semi-direct product, F = M x G. Finally,
by suitable cleverness one can reduce the arbitrary case (M non-abelian) to the case of M
abelian, thus giving the following:

Theorem 17 (Schur-Zehhenhaus). If G is a finite group, H <\ G a normal subgroup with
|H| prime to |G : H], then G is a semi-direct product G = H x (G/H). In other words,
any normal Hall subgroup H of a finite group G has a complement in G.

Proof. The case when H is abelian is clear as proved above using cohomology. Now let
us prove Schur-Zehhenhaus for arbitrary /. The following proof is developed based on
the outline given in Wikipedia.

The proof is by induction on |G|.
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i. Base case: If |G| is prime, then clearly the claim is true as H = 1,G/H = G or
H = G,G/H = 1. In both cases, G ~ H x GG/H. So assume that the claim is true
for any smaller group.

ii. Case when H is abelian: If H is abelian, the claim is true as argued above using
cohomology.

iii. Case when H is solvable: Let H be a non-trivial solvable subgroup. This means that
the derived series eventually goes to 1 i.e.,

H>HY =[H H>HY =[HY HY]>...> H™ =1

Note tha in the above series ("1 is a non-trivial abelian subgroup of H that is

characteristic in H. Since H is normal in G, H™~Y) is stable under conjugation by
elements in GG and thus is a non-trivial abelian normal subgroup in . For simplicity,
call A := H™ 1, Now H/A is a normal Hall subgroup of G//A. So by induction
hypothesis, there is a subgroup F'/A in G/A that is complement of H/A. Thus we
get subgroups F', H in G such that F N H = A and FFH = G. Now F contains
A as a normal abelian subgroup. I claim that A is a Hall subgroup of F'i.e., |F'/A]
and |A| are coprime. Because otherwise let p be a prime dividing both. Then F
contains an element of order p that is not in A. Since ' N H = A, this means that
G contains an element of order p not in H. Now since |A| divides |H|, p divides
| H|.This contradicts the assumption that H is a normal subgroup of G. So A is an
abelian normal Hall subgroup of F' and F' contains a complement of A. Call it E.
Now G = FH = FAH = EH. Moreover since FNH = Aand EN A =1, we get
ENH =1. So E si complement to H in G and we are done.

iv. If the normalizer of every p-Sylow subgroup P of H equals G, then P is normal in
H and by Sylow theory, H is a direct product of p-Sylow subgroups and hence is
nilpotent. In particular, H is solvable and we are done by previous step.

v. Suppose the normalizer N = Ng(P) of some p-Sylow subgroup P of H is smaller
than G.
Claim: G=NH
Proof of the Claim: Pick ¢ € G. Then gPg~! is a Sylow p-subgroup and hence P
and gPg~ ' are conjugate by an element of H. So there exists h € H such that
gPg ' =hPh '.Soge hN =G =HN.ButH<G=G=NH.
Since N is smaller than G and N N H is a normal Hall subgroup of N, by induction,
NN H has acomplement E in N sothat N = F(NNH)and (NNH)NE = 1. But
G=NH =E(NNH)H = EH. Moreover,since E C N, ENH = EN(NNH) =
1, so that F is complement to H and we are done.

O

40. Prove the following corollary to the above discussion.

Corollary 1. Let A be a finite dimensional central simple algebra over k with Galois splitting
field L and let n = [L : k). Then

ARy Ay - p A= My (k)

n

for some m.

Proof. Since Br(L/k) ~ H?*(G, L*) where G = Gal(L/k) and |G| annihilates H?(G, L*) by
the previous discussion, we have for every [A] € Br(L/k), |G|[A] = n[A] = [A®"] = [k]. O
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41. Prove Hilbert’s so called *Theorem 90’: If K/k is a Galois extension and G = Gal(K/k), then
H°(G,K*)=k*and H'(G,K*) = 1.
Proof of Hilbert Theoren 90:
Let f € H(G,K*) ie., f € K*suchthat§f(g) = g- f = f Vg € G. Then f is fixed by G.
So f € k*. This proves the first part.Now let us prove the second part.
Case 1: G is finite i.e., K/k is a finite Galois extension. Now let f € H' (G, K*)ie., f: G —
K* that satisfies (0f)(70) = 1 Vo, 7 € G.
Claim1: There exists ¢ € K* such that

Y f(@)ale) #0

oeG

Proof of Calim1: Since K /k is finite Galois, by primitive element theorem, we have K = k(a)

for some a. Let G = {1 = 04,09, -+ ,0,}. Consider the matrix
1 1 1]
a og(a) - oula
M= |a® oa(a)? on(a)®
a oy(a)*! op(a)™!

This is full rank Vandermonde matrix. Hence it has trivial null space. Therefore,

f(o1)

M f(102) 20
f(Un)

=Y f(o)a(a") #0

oceG

for some r. Take ¢ = a".

Claim2: With ¢ as above, let b = > _ f(o)o(c) # 0. Then 7(b) = f(r)'bVr € G.
Proof of Calim?2:

Fr)o=f(0)7 Y flo)ala)

oceG

= ) f(ro)ro(a)

oeG

=Y f) fro)rala)

oeG

But since 0 f(7,0) = 1 we have f(7)7' f(r0) = 7f(0). So we get,

f(r) =Y 7(f(o)rola)

oelG

=7(>_ fo)o(a))

oceG

= (b

34



42.

Therefore

fr)=7()"b
= (e
= (N (1) VT e G

So f=0in H'(G, K*).
Case 2: (G is infinite.
In this case

(a)

(b)

(c)

G = l&n Gal(E/k)
E/kfinite Galois, ECK
= HY(G,K*) = lim HY(Gal(E/k), E*) =0

E/kfinite Galois, ECK

Let G be a group and H be a subgroup. Let M be a G-module. Show that by restricting a
function from G x G x - - - x G — M to be a function to a function H x H x---x H — M,
we obtain a homomorphism of co-chain groups

Res% : C™(G, M) — C"(H, M)

“Res” stands for restriction. The map is called this for obvious reasons. Show that Res%
maps Z"(G, M) to Z"(H, M) and B"(G, M) to B"(H, M) and hence induces a homo-
morphism

Res% : H"(G, M) — H"(H, M)

Solution:
It is clear that restriction induces a homomorphism on co-chain groups. Now let f &€
Z"(G,M) sothat §f = 0. Then

Oflaxmx—xa = (0f)|mxmx.xa =0
So Res% maps Z"(G, M) to Z™(H, M). Similarly if f = dg, then
f|H><H><--~><H = ((59)|HxHx..-xH = 59|H><H><-~><H
So Res% maps B"(G, M) to B"(H, M) and hence induces a homomorphism between

cohomologies.

Let kK C F' C K be fields. Show that extension of scalars induces a map

Br(K/k) — Br(K/F)
[A] = [F @4 A

Solution:

This is because if A ~ B, then A ®; F'~ B®; Fand A ®, BRr K = (A®, K) QF
(B®y K)

Let K /k be a Galois extension with Galois group GG. Let H be a subgroup of GG and F' be
the corresponding fixed field. Let f be a factor set satisfying the cocycle condition. Let
A = (K, G, f) be the central simple algebra corresponding to f. Let {x, : 0 € G} be the
ususal K -basis of A, thatis, z,u = o(u)z, and 2,2, = f,,%,.. Provethat {z, : 0 € H}
isa K- basis for A" = (K, H, f|g).

Solution: This is clear.

35



43.

(d)

(a)

Let k C F C K and H a subgroup of G as in part (c). Show that the following diagram
commutes.

H?(G,K*) —— Br(K/k)

G F
Respg Resy,

H?(H,K*) ——— Br(K/F)

Solution:
Recall from the above notation that A’ = (K, H, f|y). To show that the above diagram
commutes one needs to show that [A’] = [A ®; F|. Since A’ is a subalgebra of A, we

have a right module action of A’ on A via multiplication on the right. Now consider the
natural map

A R F— EndA/(A) =F
AL ® Cr— ¢axg®c
where ¢u., gc(ex;) = ax,(ex;)c. This map is A'-invariant because H and hence all

{z, : 7 € H} fix F.This map is clearly a homomorphism of F'-algebras and is easy to
see that it is injective. Moreover by Proposition 6 as proved before,

deg A-[K : F])2
deg A’

= [K : K|[K : FPK : f)?

= [K : k]

=dimpA Qi F

dimp(E) = (deg B = (rdimy A)* = (

So the map is surjective and hence is an isomorphism. From Proposition 6 we also con-
clude that [A'] = [E] = [A ®; F.

Let G be a group, H a normal subgroup and M a G-module. Show that M* = {m €
M : o(m) =mVo € H} is a G/H-module. Show that there is a homomorphism

Infg : H*(G/H, M) — H*(G, M)
which sends a cocycle f to the function defined by
(0,7) = f(oH,TH)

“Inf” stands for inflationbecause it gives a map from the cohomology of a quotient group
GG/ H into the cohomology ofthe (inflated) full group G.

Solution:

It is easy to see that the map

InfS: C*(G/H,M™) - C*(G, M)
fr fom(wherem: G x G — G/H x G/H is the projection)

is a homomorphism and takes cocycles to cocyles and coboundaries to coboundaries, thus
inducing a map between the cohomologies.
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(b) Let k C F' C K be fields such that [K : k] < co. Let B be a central simple algebra over
k with maximal commutative subring F'. Considering K ®p B as right B-module, show
that C':= Endp(K ®p B) is a central simple algebra over k£ with maximal commutative
subring K. Further show that [C'] = [B] in Br(k).

Solution:

The fact that [C'] = [B] is clear by Proposition 6. Now note that B ~ (F,G/H, f) for
some factor set f. Let A be the central simple algebra over k£ given by inflating f i.e,
A = (K,G, f') where f' = InfS5(f). So A is generated as a K-basis by {z, : 0 € G}
with multiplication given by

axsfr, = ao(fB) for0T0r
Consider the map

A — Endg(K ®p B) = C
aTe = Qaz,

where ¢n., (¢ @ T.5) = ao(c) ® r,yx, . It is easy to see that this map is a k-algebra
homomorphism that is injective. Moreover, by Proposition 6, C' is central simple over k
and

deg C = rdimp(K ®p B)
N deg B
_ dimpKdimpB
B deg B
=dimpK = deg A

So the map is surjective and hence is an isomorphism. Therefore the maximal subfield of
C' = maximal subfield of A = K.

(c) Show that the following diagram commutes:

H2(G/H, F*) —— Br(F/k)

Infg Id:Bw— B

H2(G,K*) ——— Br(K/k)

With the notations as before, the diagram commutes if [B] = [A] which is proved in part
(b). So we are done.

44. Show that the following sequence is exact:

n G €8G
0 — HX(G/H, F*) 2 g2, k) B0 g2, i

Warning: The map Res{, is not necessarily surjective as claimed incorrectly in the book.
Solution: From previous two exercises,
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n G esG
0 —— H2AG/H, F*) % 6, k) B g2 (H, K

! Fook

0 — Br(F/k) —— Br(K/k) —%— Br(K/F)

where [ : A+— Aand R : A — A ®y F. Since the squares commute as proved in previous
problems, to show exactness of the top sequence, it suffices to show exactness of the bottom
sequence.We will show that now:

I is injective:

This is clear since I(A) = A.

Rol=0:

Let A € Br(F/k), then F splits A. So we have Ro [(A) = R(A) = [A®; F] = [k] = 0.
Ker R=1ImI:

Suppose R(A) = 0 where A € Br(K/k). Then A ®; F ~ M, (F). This means that A is split
by F. So A € Br(F/k).

We have shown that the sequence is exact.
DONE!!!
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