Midterm #2

INSTRUCTIONS:

- 1. Answer each question on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your name in the upper right hand corner of each page.

PROBLEMS:

- 1. Let M and N be closed linear subspaces of a Hilbert space \mathcal{H} , and assume P, Q are orthogonal projections with $\operatorname{ran}(P) = M$ and $\operatorname{ran}(Q) = N$. Show that the following conditions are equivalent:
 - (a) $M \subset N$
 - (b) QP = P
 - (c) PQ = P
 - (d) $||Px|| \le ||Qx||$ for all $x \in \mathcal{H}$
 - (e) $(x, Px) \leq (x, Qx)$ for all $x \in \mathcal{H}$
- 2. Consider the Schrödinger equation on the circle,

$$iu_t = u_{xx}, \qquad x \in \mathbb{T}, \quad t \in \mathbb{R}$$

 $u(x,0) = f(x), \qquad x \in \mathbb{T},$

where $u: \mathbb{T} \times \mathbb{R} \to \mathbb{C}, f: \mathbb{T} \to \mathbb{C}$, and the derivatives are interpreted in an appropriate sense.

- (a) Solve for u(x,t) by the use of Fourier series.
- (b) Briefly compare the smoothing property of the Schrödinger equation with that of the heat equation.
- 3. Suppose that $g:[0,1] \to \mathbb{C}$ is a continuous function. Define the multiplication operator

$$M: L^{2}([0,1],m) \to L^{2}([0,1],m)$$

by

$$(Mg)(x) = g(x)f(x).$$

- (a) Prove that M is a bounded linear operator on $L^2([0,1],m)$ and compute the adjoint M^* .
- (b) Describe the point spectrum of M.
- (c) For what functions g is M self-adjoint? For what functions g is M unitary?
- 4. Suppose that $\{P_n\}$ is a sequence of orthogonal projections on a Hilbert space \mathcal{H} such that

$$\operatorname{ran}(P_n) \subset \operatorname{ran}(P_{n+1}), \qquad \bigcup_{n=1}^{\infty} \operatorname{ran}(P_n) = \mathcal{H}.$$

(a) Prove that for every $x \in \mathcal{H}$, $P_n x \to x$ as $n \to \infty$.

- (b) Show that $\{P_n\}$ does not converge to the identity operator I with respect to the operator norm unless $P_n = I$ for all sufficiently large n.
- 5. Suppose that U is a unitary operator on a Hilbert space \mathcal{H} . Let $M = \{x \in \mathcal{H} : Ux = x\}$, and P the orthogonal projection onto M. For all $x \in \mathcal{H}$, show that

$$\lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} U^n x = Px,$$

where U^0 represents the identity operator. This is known as **von Neumann's ergodic theorem**.