Homework \#5

1. Define $f: \mathbb{T} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$ for $-\pi \leq x \leq \pi$.
(a) Compute the Fourier coefficients of f.
(b) Use Parseval's identity to deduce that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

2. Suppose that $\left\{\phi_{n}\right\}$ is an approximate identity on \mathbb{T} and $f \in L^{1}(\mathbb{T})$. Prove that

$$
\left\|\phi_{n} * f\right\|_{1} \leq\|f\|_{1}
$$

and

$$
\left\|\phi_{n} * f-f\right\|_{1} \longrightarrow 0
$$

as $n \rightarrow \infty$.
3. Consider the differential equation

$$
-u^{\prime \prime}+u=f
$$

If $f \in L^{2}(\mathbb{T})$, use Fourier series to show that there is a unique solution $u \in H^{2}(\mathbb{T})$.
4. Let $T, S \in L^{2}(\mathbb{T})$ be the triangular and square wave, respectively, defined by

$$
T(x)=|x| \quad \text { if }|x| \leq \pi, \quad S(x)=\left\{\begin{aligned}
1 & \text { if } 0<x<\pi \\
-1 & \text { if }-\pi<x<0
\end{aligned}\right.
$$

(a) Compute the Fourier series of T and S.
(b) Show that $T \in H^{1}(\mathbb{T})$ and $T^{\prime}=S$.
(c) Show that $S \notin H^{1}(\mathbb{T})$.

