Homework #4

1. Suppose $\{u_n\}$ is an orthonormal sequence in a Hilbert space \mathcal{H} . For any $x \in \mathcal{H}$, prove that

$$\lim_{n \to \infty} (x, u_n) = 0.$$

- 2. Prove that if \mathcal{M} is a dense linear subspace of a separable Hilbert space \mathcal{H} , then \mathcal{H} has an orthonormal basis consisting of elements of \mathcal{M} . Does the same result hold for arbitrary dense subsets of \mathcal{H} ?
- 3. Define the **Legendre polynomials** P_n by

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

- (a) Show that the Legendre polynomials are orthogonal in $L^2([-1, 1], m)$, and that they are obtained by Gram–Schmidt orthogonalization (without proper normalization) of the monomials.
- (b) Show that

$$||P_n||^2 = \int_{-1}^{1} P_n(x)^2 dx = \frac{2}{2n+1}$$

- (c) Define $Q_n(x) = P_n(x)/||P_n||$. Show that the polynomials $\{Q_n : n \in \mathbb{N}\}$ form an orthonormal basis of $L^2([-1,1],m)$.
- **Bonus**: Prove that any two orthonormal bases of the Hilbert space \mathcal{H} have the same cardinality.