Homework #3

1. Let

$$F(x) = \begin{cases} x^2 \sin(x^{-2}), & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Show that F is differentiable everywhere (including at x = 0), but $F \notin BV([-1, 1])$.

2. Give an example of an increasing function $F : \mathbb{R} \to \mathbb{R}$ whose set of discontinuities is \mathbb{Q} .

- 3. If $F : \mathbb{R} \to \mathbb{C}$ is Lipschitz continuous, show that F is differentiable almost everywhere. Give an example to show that F may not be differentiable everywhere.
- 4. If $F : \mathbb{R} \to \mathbb{R}$ is increasing, show that $F(b) F(a) \ge \int_a^b F'(t) dt$ for every a < b. Give an example to show that the inequality may be strict.