Homework #2

1. Let ν be a signed measure on (X, \mathcal{F}) . For $E \in \mathcal{F}$, define

$$\lambda(E) = \sup \sum_{j} |\nu(E_j)|,$$

where the supremum is over all finite partitions $\{E_j\}$ of E. Does it follow that $\lambda = |\nu|$? If yes, prove the statement. Otherwise provide a counterexample.

- 2. If $f \in L^1(\mathbb{R}^n)$ and $f \neq 0$, show that there exists C, R > 0 such that $Hf(x) \geq C ||x||^{-n}$ for ||x|| > R.
- 3. For a signed Borel measure μ on \mathbb{R}^n , we define the **maximal function** $M\mu$ by

$$(M\mu)(x) = \sup_{r>0} \frac{|\mu|(B(x,r))}{m(B(x,r))}.$$

Prove that there exists a constant C>0 such that for every finite signed Borel measure μ on \mathbb{R}^n and every $\alpha>0$

$$m(\{x \in \mathbb{R}^n : (M\mu)(x) > \alpha\}) \le \frac{C}{\alpha} |\mu|(\mathbb{R}^n).$$

4. If E is a Borel set in \mathbb{R}^n , the **density** $D_E(x)$ of E at the point x is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(x,r))}{m(B(r,x))},$$

whenever the limit exists.

- (a) Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \notin E$.
- (b) Find an example of E and x such that $D_E(x) \in (0,1)$ or $D_E(x)$ does not exist.
- 5. If λ and μ are positive, mutually singular Borel measures on \mathbb{R}^n and $\lambda + \mu$ is regular, show that λ and μ are also both regular.
- 6. (a) If $F : \mathbb{R} \to \mathbb{R}$ is increasing and bounded, show that $F \in BV$.
 - (b) If $F, G \in BV$ and $a, b \in \mathbb{C}$, prove that $aF + bG \in BV$.