Homework #1

- 1. If ν is a signed measure on (X, \mathcal{F}) , prove that $E \in \mathcal{F}$ is null for v if and only if $|\nu|(E) = 0$. In addition, for signed measures μ and ν on (X, \mathcal{F}) , show that the following are equivalent
 - (a) $\nu \perp \mu$
 - (b) $|\nu| \perp \mu$
 - (c) $\nu^+ \perp \mu$ and $\nu^- \perp \mu$
- 2. Suppose $\nu(E) = \int_E f d\mu$, where μ is a positive measure on (X, \mathcal{F}) and $f: X \to [-\infty, \infty]$ is a measurable function such that at least one of $\int f^+ d\mu$ or $\int f^- d\mu$ is finite. Describe the Hahn decomposition of ν as well as the positive, negative, and total variations of ν in terms of f and μ .
- 3. Let ν be a signed measure on (X, \mathcal{F}) , and assume μ is a positive measure on (X, \mathcal{F}) . Prove that the following are equivalent:
 - (a) $\nu \ll \mu$,
 - (b) $|\nu| \ll \mu$,
 - (c) $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.
- 4. Let $\{\nu_n\}$ be a sequence of positive measures, and let μ be a positive measure on (X, \mathcal{F}) .
 - (a) If $\nu_n \perp \mu$ for all *n*, show that $\sum_{n=1}^{\infty} \nu_n \perp \mu$.
 - (b) If $\nu_n \ll \mu$ for all *n*, prove that $\sum_{n=1}^{\infty} \nu_n \ll \mu$.
- 5. Let μ be a positive measure. A collection of functions $\{f_{\alpha}\}_{\alpha \in I}$ in $L^{1}(\mu)$ is called **uniformly** integrable if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\sup_{\alpha \in I} \left| \int_A f_\alpha \ d\mu \right| < \varepsilon$$

whenever $\mu(A) < \delta$.

- (a) Prove that any finite subset of $L^1(\mu)$ is uniformly integrable.
- (b) If $\{f_n\}$ is a sequence in $L^1(\mu)$ which converges in L^1 -metric to $f \in L^1(\mu)$, show that $\{f_n\}$ is uniformly integrable.
- 6. Prove the uniqueness portion of the Lebesgue–Radon–Nikodym theorem.
- 7. Let X = [0, 1], \mathcal{F} be the Borel σ -algebra on X, m be Lebesgue measure, and μ be the counting measure on \mathcal{F} . Show that $m \ll \mu$ but $dm \neq f d\mu$ for any f. Does this contradict the Radon-Nikodym theorem? Explain.