Final Exam

INSTRUCTIONS:

- 1. Answer each question on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your name in the upper right hand corner of each page.

PROBLEMS:

- 1. Let X be a normed linear space and Y a Banach space. If M is a dense linear subspace of X and $T: M \to Y$ is a bounded linear map, prove that there exists a unique bounded linear extension $\overline{T}: X \to Y$ such that $\overline{T}x = Tx$ for all $x \in M$ and $\|\overline{T}\| = \|T\|$. This result is known as the **Bounded Linear Transformation (BLT) theorem**.
- 2. Let $f \in \mathcal{S}(\mathbb{R})$ with the property that

$$\int_{\mathbb{R}} f(x) x^n dx = 0$$

for every $n = 0, 1, 2, \dots$ Must f be identically zero? Prove or disprove.

- 3. Let μ be a Radon measure on the locally compact group G. If $f \in C_c(G)$, prove that the functions $x \mapsto \int L_x f d\mu$ and $x \mapsto \int R_x f d\mu$ are continuous.
- 4. Consider a linear functional T(f) = f(1/2) defined on the space of polynomials on [0, 1]. Does T extend to a bounded linear functional on $L^2([0, 1])$? Prove or disprove.
- 5. Let G be a topological group and H a subgroup of G. Prove that

$$\overline{H} = \bigcap_{U} HU$$

where the intersection is over all neighborhoods U of e.

6. If f is a real-valued function on [0, 1] and

$$\gamma(t) = t + if(t),$$

the length of the graph of f is, by definition, the total variation of γ on [0, 1]. Show that this length is finite if and only if $f \in BV([0, 1])$. In addition, show that it is equal to

$$\int_{0}^{1} \sqrt{1 + |f'(t)|^2} dt$$

if f is absolutely continuous.