Practice Midterm

The following is a list of problems I consider midterm-worthy. This list of problems should serve as a good place to start studying, and it should not be considered a comprehensive list of problems from the sections we've covered. YOU are responsible for studying all the sections to be covered on the midterm.

- 1. A random sample of size n = 100 is taken from an infinite population with mean $\mu = 40$ and variance $\sigma^2 = 9$. Use Chebyshev's inequality to estimate the probability that the value we obtain for \bar{X} is between 37 and 43?
- 2. If S_1^2 and S_2^2 are the variances of independent random samples of sizes $n_1 = 10$ and $n_2 = 15$ from a normal population with $\sigma_1^2 = 12$ and $\sigma_2^2 = 18$, find $\mathbb{P}(S_1^2/S_2^2 > 1.16)$.
- 3. How many different samples of size n = 10 can be drawn from a finite population of size N = 36? What is the probability of each of these samples?
- 4. If X has F distribution with ν_1 and ν_2 degrees of freedom, show that $Y = \frac{1}{X}$ has F distribution with ν_2 and ν_1 degrees of freedom.
- 5. Let X_1, \ldots, X_n be a random sample of size *n* from a uniform population on $[0, \beta]$ (i.e. $\alpha = 0$).
 - (a) Show that $X_{(n)}$ is a consistent estimator of β .
 - (b) Show that $X_{(1)}$ is a biased estimator of β and compute the bias.
- 6. Let X_1, \ldots, X_n constitute a random sample of size *n* from a uniform population on [0, 1]. Compute the joint probability density function (jpdf) of $X_{(1)}$ and $X_{(n)}$.
- 7. Let X be a binomial random variable with parameters (n, θ) . Show that $\frac{2X+3}{2n+1}$ is a biased estimator of the parameter θ . Is this estimator asymptotically unbiased?
- 8. Given a random sample of size n from a gamma population, use the method of moments to obtain formulas for estimating the parameters α and β
- 9. Given a random sample of size n from a uniform population with $\alpha = 3$, use the method of moments to obtain a formula for estimating the parameter β .
- 10. If X_1, \ldots, X_n constitute a random sample of size *n* from an exponential population, show that \overline{X} is a sufficient estimator of the parameter θ .

Select solutions and hints:

1. Recall that \bar{X} has mean μ and variance σ^2/n . Thus, by Chebyshev's inequality,

$$\mathbb{P}(37 < \bar{X} < 43) = \mathbb{P}(|\bar{X} - \mu| < 3) = \mathbb{P}\left(|\bar{X} - \mu| < \frac{3}{\sigma/\sqrt{n}}\sigma/\sqrt{n}\right) \ge 1 - \frac{1}{n} = 0.99.$$

- 6. **Hint**: Compute the probability $\mathbb{P}(X_{(1)} > s, X_{(n)} \leq t)$.
- 7. Using that $\mathbb{E}[X] = n\theta$, we find

$$\mathbb{E}\left[\frac{2X+3}{2n+1}\right] = \frac{1}{2n+1}(2\mathbb{E}[X]+3) = \frac{2n\theta+3}{2n+1} \neq \theta.$$

So $\frac{2X+3}{2n+1}$ is a biased estimator of the parameter θ . However,

$$\lim_{n \to \infty} \mathbb{E}\left[\frac{2X+3}{2n+1}\right] = \theta_1$$

and hence $\frac{2X+3}{2n+1}$ is an asymptotically unbiased estimator of θ .

8. To solve for both parameters, we will use both the first and second sample moments (m'_1 and m'_2 , respectively). Based on the moments of the gamma distribution, we find

$$m_1' = \alpha \beta$$

and

$$m_2' = \alpha(\alpha + 1)\beta^2.$$

Solving for α and β , we obtain the following two estimators:

$$\hat{\alpha} = \frac{(m_1')^2}{m_2' - (m_1')^2}$$

and

$$\hat{\beta} = \frac{m_2' - (m_1')^2}{m_1'}.$$

10. The joint probability density function (jpdf) of the random sample X_1, \ldots, X_n is given by

$$f(x_1,\ldots,x_n;\theta) = \prod_{i=1}^n \frac{1}{\theta} e^{-x_i/\theta} \chi(x_i),$$

where

$$\chi(x_i) = \begin{cases} 1, & \text{if } x_i > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, we decompose

$$f(x_1,\ldots,x_n;\theta) = \frac{1}{\theta^n} e^{-n\bar{x}/\theta} \prod_{i=1}^n \chi(x_i) = g(\theta,\bar{x})h(x_1,\ldots,x_n)$$

where

$$g(\theta, \bar{x}) = \frac{1}{\theta^n} e^{-n\bar{x}/\theta}$$

and

$$h(x_1,\ldots,x_n) = \prod_{i=1}^n \chi(x_i).$$

By the factorization theorem, we conclude that \bar{X} is a sufficient estimator of θ .