Practice Midterm

The following is a list of problems I consider midterm-worthy. This list of problems should serve as a good place to start studying, and it should not be considered a comprehensive list of problems from the sections we've covered. YOU are responsible for studying all the sections to be covered on the midterm.

1. A random sample of size $n=100$ is taken from an infinite population with mean $\mu=40$ and variance $\sigma^{2}=9$. Use Chebyshev's inequality to estimate the probability that the value we obtain for \bar{X} is between 37 and 43 ?
2. If S_{1}^{2} and S_{2}^{2} are the variances of independent random samples of sizes $n_{1}=10$ and $n_{2}=15$ from a normal population with $\sigma_{1}^{2}=12$ and $\sigma_{2}^{2}=18$, find $\mathbb{P}\left(S_{1}^{2} / S_{2}^{2}>1.16\right)$.
3. How many different samples of size $n=10$ can be drawn from a finite population of size $N=36 ?$ What is the probability of each of these samples?
4. If X has F distribution with ν_{1} and ν_{2} degrees of freedom, show that $Y=\frac{1}{X}$ has F distribution with ν_{2} and ν_{1} degrees of freedom.
5. Let X_{1}, \ldots, X_{n} be a random sample of size n from a uniform population on $[0, \beta]$ (i.e. $\alpha=0$).
(a) Show that $X_{(n)}$ is a consistent estimator of β.
(b) Show that $X_{(1)}$ is a biased estimator of β and compute the bias.
6. Let X_{1}, \ldots, X_{n} constitute a random sample of size n from a uniform population on $[0,1]$. Compute the joint probability density function (jpdf) of $X_{(1)}$ and $X_{(n)}$.
7. Let X be a binomial random variable with parameters (n, θ). Show that $\frac{2 X+3}{2 n+1}$ is a biased estimator of the parameter θ. Is this estimator asymptotically unbiased?
8. Given a random sample of size n from a gamma population, use the method of moments to obtain formulas for estimating the parameters α and β
9. Given a random sample of size n from a uniform population with $\alpha=3$, use the method of moments to obtain a formula for estimating the parameter β.
10. If X_{1}, \ldots, X_{n} constitute a random sample of size n from an exponential population, show that \bar{X} is a sufficient estimator of the parameter θ.

Select solutions and hints:

1. Recall that \bar{X} has mean μ and variance σ^{2} / n. Thus, by Chebyshev's inequality,

$$
\mathbb{P}(37<\bar{X}<43)=\mathbb{P}(|\bar{X}-\mu|<3)=\mathbb{P}\left(|\bar{X}-\mu|<\frac{3}{\sigma / \sqrt{n}} \sigma / \sqrt{n}\right) \geq 1-\frac{1}{n}=0.99
$$

6. Hint: Compute the probability $\mathbb{P}\left(X_{(1)}>s, X_{(n)} \leq t\right)$.
7. Using that $\mathbb{E}[X]=n \theta$, we find

$$
\mathbb{E}\left[\frac{2 X+3}{2 n+1}\right]=\frac{1}{2 n+1}(2 \mathbb{E}[X]+3)=\frac{2 n \theta+3}{2 n+1} \neq \theta
$$

So $\frac{2 X+3}{2 n+1}$ is a biased estimator of the parameter θ. However,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{2 X+3}{2 n+1}\right]=\theta
$$

and hence $\frac{2 X+3}{2 n+1}$ is an asymptotically unbiased estimator of θ.
8. To solve for both parameters, we will use both the first and second sample moments (m_{1}^{\prime} and m_{2}^{\prime}, respectively). Based on the moments of the gamma distribution, we find

$$
m_{1}^{\prime}=\alpha \beta
$$

and

$$
m_{2}^{\prime}=\alpha(\alpha+1) \beta^{2} .
$$

Solving for α and β, we obtain the following two estimators:

$$
\hat{\alpha}=\frac{\left(m_{1}^{\prime}\right)^{2}}{m_{2}^{\prime}-\left(m_{1}^{\prime}\right)^{2}}
$$

and

$$
\hat{\beta}=\frac{m_{2}^{\prime}-\left(m_{1}^{\prime}\right)^{2}}{m_{1}^{\prime}}
$$

10. The joint probability density function (jpdf) of the random sample X_{1}, \ldots, X_{n} is given by

$$
f\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta} \chi\left(x_{i}\right)
$$

where

$$
\chi\left(x_{i}\right)= \begin{cases}1, & \text { if } x_{i}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, we decompose

$$
f\left(x_{1}, \ldots, x_{n} ; \theta\right)=\frac{1}{\theta^{n}} e^{-n \bar{x} / \theta} \prod_{i=1}^{n} \chi\left(x_{i}\right)=g(\theta, \bar{x}) h\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
g(\theta, \bar{x})=\frac{1}{\theta^{n}} e^{-n \bar{x} / \theta}
$$

and

$$
h\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \chi\left(x_{i}\right)
$$

By the factorization theorem, we conclude that \bar{X} is a sufficient estimator of θ.

