"Well, this is easy." – Sergei Kuznetsov

1. **DEFINITIONS**

There are more than a few. I'll use \overline{R} for $\mathbb{R} \cup \{\pm \infty\}$.

Partition: A partition of [a, b] is a collection of points $\{x_0, \ldots, x_m\}$ so that $x_0 =$ $a, x_m = b$ and $x_{i-1} < x_i$ for i = 1, ..., m.

Variation: The variation of f over [a, b] is defined by

$$V = V[f; a, b] = \sup_{\Gamma} S_{\Gamma}$$

where S_{Γ} is the sum

$$\sum_{i=1}^{m} |f(x_i) - f(x_{i-1})|$$

and the supremum is taken over all partitions Γ of [a, b]. Intuitively, the variation is how much f moves up and down over the interval [a, b].

Function of Bounded Variation: one with V[f; a, b] finite. Function of Unbounded Variation: one with $V[f; a, b] = +\infty$. **Positive Variation:** The positive variation of f over [a, b] is defined by

$$P = P[f; a, b] = \sup_{\Gamma} P_{\Gamma}$$

where

$$P_{\Gamma} = \sum_{i=1}^{m} (f(x_i) - f(x_{i-1}))^+$$

and the supremum is taken over all partitions Γ of [a, b]. Intuitively, the positive variation is how much f moves up over the interval [a, b].

Negative Variation: The *negative variation of* f *over* [a, b] is defined by

$$N = N[f; a, b] = \sup_{\Gamma} N_{\Gamma}$$

where

$$N_{\Gamma} = \sum_{i=1}^{m} (f(x_i) - f(x_{i-1}))^{-1}$$

and the supremum is taken over all partitions Γ of [a, b]. Intuitively, the negative variation is how much f moves down over the interval [a, b].

Rectifiable Curve: Intuitively, a curve with finite length. Formally, the length L of a curve C with coordinate functions $\phi : [a, b] \to \mathbb{R}$ and $\psi : [a, b] \to \mathbb{R}$ is defined as the supremum (over Γ) of the sums

$$L(\Gamma) = \sum_{i=1}^{m} \sqrt{(\phi(t_i) - \phi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1}))^2}$$

where Γ is a partition $\{t_0 = a, \ldots, t_m = b\}$ of [a, b]. We say C is a *rectifiable curve* if L is finite.

- **Norm of a Partition:** The norm $|\Gamma|$ of a partition Γ is the length of the largest interval of Γ . That is, if $\Gamma = \{x_0, \ldots, x_n\}, |\Gamma| = \max_i \{x_i x_{i-1}\}.$
- **Riemann-Stieltjes Integral:** Intuitively, the Riemann integral with a change of variables built in. Formally, let f and ϕ be two functions which are defined and finite on a finite interval [a, b]. If $\Gamma = \{a = x_0 < x_1 < \cdots < x_m = b\}$ is a partition of [a, b], we arbitrarily select intermediate points $\{\xi_i\}_{i=1}^m$ satisfying $x_{i-1} \leq \xi_i \leq x_i$, and write

$$R_{\Gamma} = \sum_{i=1}^{m} f(\xi_i)(\phi(x_i) - \phi(x_{i-1})).$$

 R_{Γ} is called a *Riemann-Stieltjes sum* for Γ , and of course deponds on ξ_i , f, ϕ , etc, but we don't bother to indicate this dependence in our notation. Then, if $I = \lim_{|\Gamma| \to 0} R_{\Gamma}$ exists and is finite, that is, if given $\epsilon > 0$ there is a $\delta > 0$ such that $|I - R_{\Gamma}| < \epsilon$ for any Γ satisfying $|\Gamma| < \delta$, then I is called *the Riemann-Stieltjes integral of* f with respect to ϕ on [a, b], and denoted

$$I = \int_{a}^{b} f(x) \, d\phi(x) = \int_{a}^{b} f \, d\phi.$$

- **Step Function:** A function ϕ whose domain may be partitioned into finitely many intervals so that ϕ is constant on each interval.
- **Lebesgue Outer Measure:** Intuitively, the smallest volume of intervals that cover E. Formally, let E be a subset of \mathbb{R}^n . Cover E by a *countable* collection S of n-dimensional closed intervals I_k , and let

$$\sigma(S) = \sum_{I_k \in S} v(I_k),$$

where v is the n-volume of the interval I_k . The Lebesgue outer measure (or exterior measure) of E, denoted $|E|_e$, is defined by

$$|E|_e = \inf \sigma(S),$$

where the infimum is taken over all such covers S of E.

Lebesgue Measurable Set: Intuitively, a set which is well approximated by a collection of intervals. Formally, a subset E of \mathbb{R}^n is said to be *Lebesgue measurable*, or simply *measurable*, if given $\epsilon > 0$, there exists an open set G such that

$$E \subset G$$
 and $|G - E|_{\epsilon} < \epsilon$.

(Note that open sets are precisely those that can be expressed as a countable union of open intervals, hence the intuitive interpretation.)

- **Lebesgue Measure:** If E is Lebesgue measurable, we define its *measure* |E| to be its outer measure $|E|_e$. Intuitively, this is the volume of E.
- σ -Algebra: A collection of sets Σ that is closed under complements, countable unions, and countable intersections. (The first two properties imply the third.)
- **Borel Set:** A set obtainable by complements, countable unions, and countable intersections from open sets in finitely many steps. Alternatively, a member of the σ -algebra generated by the open subsets of \mathbb{R}^n .

- Almost Everywhere: A property is said to hold *almost everywhere* (or a.e if we're feeling lazy) on a set E, if the set of points of E where it does *not* hold has measure zero.
- **Measurable Function:** A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ so that the preimage of each interval $(a, \infty]$ is a measurable set for each finite $a \in \mathbb{R}$. Intuitively, these are the functions so that the Lebesgue integral makes sense.
- **Upper-semicontinuous Function:** Intuitively, a function whose limsups are not too large. Formally, $f : E \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ is upper semicontinuous (or use if we're feeling lazy) at \mathbf{x}_0 if

$$\limsup_{\mathbf{x}\to\mathbf{x}_0;x\in E}f(\mathbf{x})\leq f(\mathbf{x}_0).$$

Alternatively, we have exactly one half of the ϵ - δ definition of continuity: f is use at \mathbf{x}_0 if for all $\epsilon > 0$ there exists $\delta > 0$ so that for all $\mathbf{x} \in E$ with $|\mathbf{x} - \mathbf{x}_0| < \delta$ it follows that

$$f(\mathbf{x}) - f(\mathbf{x}_0) < \epsilon.$$

Lower-semicontinuous Function: Intuitively, a function whose limits are not too small. Formally, $f : E \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ is *lower semicontinuous* (or lsc if we're feeling lazy) at \mathbf{x}_0 if

$$\liminf_{\mathbf{x}\to\mathbf{x}_0;x\in E} f(\mathbf{x}) \ge f(\mathbf{x}_0).$$

Alternatively, we have the other half of the ϵ - δ definition of continuity: f is lsc at \mathbf{x}_0 if for all $\epsilon > 0$ there exists $\delta > 0$ so that for all $\mathbf{x} \in E$ with $|\mathbf{x} - \mathbf{x}_0| < \delta$ it follows that

$$-\epsilon < f(\mathbf{x}) - f(\mathbf{x}_0).$$

Property \mathscr{C} : Intuitively, discontinuous in only a set of arbitrarily small measure. Formally, f has property \mathscr{C} on E if given $\epsilon > 0$, there is a closed set $F \subset E$ such that

(1) $|E - F| < \epsilon$

(2) f is continuous relative to F.

If E is measurable, then this is equivalent to f being measurable on E. (This definition appears to be endemic to our textbook.)

Convergence in Measure: A sequence of functions f_k is said to converge in measure to f on E (written $f_k \xrightarrow{m} f$) if for every $\epsilon > 0$,

$$\lim_{k \to \infty} |\{x \in E : |f(\mathbf{x}) - f_k(\mathbf{x})| > \epsilon\}| = 0.$$

Intuitively, the size of the set where f_k is far from f can be made to have arbitrarily small measure by choosing k large.

Lebesgue Integral: This is defined in two steps. For the first step, let $f : E \subset \mathbb{R}^n \to \overline{R}$ be a non-negative function. Define

$$R(f, E) = \{ (\mathbf{x}, y) \in \mathbb{R}^{n+1} : \mathbf{x} \in E, y \in \mathbb{R}, 0 \le y \le f(\mathbf{x}) \}$$

This is the region between 0 and the graph of f. If R(f, E) is measurable, we define the Lebesgue integral of f orever E as

$$|R(f,E)|_{(n+1)} = \int_E f(\mathbf{x}) \, d\mathbf{x}.$$

In the case that f is not non-negative, we define

$$\int_{E} f(\mathbf{x}) \, d\mathbf{x} = \int_{E} f^{+} \, d\mathbf{x} - \int_{E} f^{-} \, d\mathbf{x}$$

provided that at least one of the integrals on the right is finite.

Simple Function: A function f is *simple* if it takes finitely many values.

Integrable Function: A function $f : E \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ is *integrable* if $\int_E f$ exists and is finite.

- L^p Space: $L^p(E), 0 is the set of functions <math>f : E \to \mathbb{R}$ so that $|f|^p$ is integrable over E. In particular, if f is integrable, $f \in L(E)$.
- **Equimeasurable:** Two functions $f, g : E \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ are *equimeasurable* or *equidis-tributed* if

$$\{\mathbf{x} \in E : f(\mathbf{x}) > \alpha\}| = |\{\mathbf{x} \in E : f(\mathbf{x}) > \alpha\}|$$

for all α . In the notation of §5.4, $\omega_{f,E} = \omega_{g,E}$.

Convolution: If f and g are measurable functions in \mathbb{R}^n , their convolution $(f * g)(\mathbf{x})$ is defined by

$$(f * g)(\mathbf{x}) = \int_{\mathbb{R}^n} f(\mathbf{x} - \mathbf{t})g(\mathbf{t}) d\mathbf{t}.$$

Set Function: A set function is a real-valued function F defined on a σ -algebra Σ of measurable sets such that

(1) F(E) is finite for every $E \in \Sigma$,

(2) F is countably additive; i.e., if $E = \bigcup_k E_k$ is a union of disjoint $E_k \in \Sigma$, then

$$F(E) = \sum_{k} F(E_k).$$

Indefinite Integral: If $f \in L(A)$, where A is a measurable subset of \mathbb{R}^n , the *indefinite integral of f* is defined to be the set function

$$F(E) = \int_E f,$$

where E is any measurable subset of A.

- **Continuous Set Function:** A set function F(E) is called *continuous* if $F(E) \to 0$ as the diameter $\sup\{|\mathbf{x} - \mathbf{y}| : \mathbf{x}, \mathbf{y} \in E\}$ tends to 0; that is, F(E) is continuous if, given $\epsilon > 0$, there exists $\delta > 0$ such that $|F(E)| < \epsilon$ whenever the diameter of E is less than δ .
- Absolutely Continuous Set Function: A set function F is called *absolutely continuous* if F(E) tends to zero as the measure of E tends to zero. If you like ϵ s and δ s, F is absolutely continuous if given $\epsilon > 0$, there exists $\delta > 0$ such that $|F(E)| < \epsilon$ whenever the measure of E is less than δ .
- **Hardy-Littlewood Maximal Function:** If f is a function defined on \mathbb{R}^n and integrable over every cube Q, we define the Hardy-Littlewood maximal function of f by

$$f^*(\mathbf{x}) = \sup \frac{1}{|Q|} \int_Q |f(\mathbf{y})| d\mathbf{y}$$

where the supremum is taken over all Q with edges parallel to the coordinate axes and center \mathbf{x} . Other sources tend to define this in terms of balls centered at \mathbf{x} rather than cubes.

5

Weak $L(\mathbb{R}^n)$: A function f belongs to weak $L(\mathbb{R}^n)$ if there is a constant c independent of α so that

$$|\{\mathbf{x} \in \mathbb{R}^n : |f(\mathbf{x})| > \alpha\} \le \frac{c}{\alpha}$$

for all $\alpha > 0$. These are functions that obey Tchebyshev's Inequality except they get the constant wrong.

- **Locally Integrable:** A function f is *locally integrable* on E if it is integrable over every bounded measurable subset of E.
- **Point of Density:** \mathbf{x} is a *point of density of E* if

$$\lim_{Q \searrow \mathbf{x}} \frac{|E \cap Q|}{|Q|} = 1$$

Point of Dispersion: \mathbf{x} is a *point of dispersion of* E if

$$\lim_{Q \searrow \mathbf{x}} \frac{|E \cap Q|}{|Q|} = 0.$$

- Cover in the Sense of Vitali: A family K of cubes is said to cover a set E in the Vitali sense if for every $\mathbf{x} \in E$ and $\eta > 0$, there is a cube in K containing \mathbf{x} whose diameter is less than η .
- Absolutely Continuous Function: A finite function f on a finite interval [a, b] is said to be *absolutely continuous* if given $\epsilon > 0$, there exists $\delta > 0$ such that for any collection $\{[a_i, b_i]\}$ (finite or countable) of nonoverlapping subintervals of [a, b],
- Singular Function: A function f is singular on [a, b] if f' is zero a.e. in [a, b].
- **Convex Function:** Let ϕ be defined and finite on an interval (a, b). We say ϕ is *convex* in (a, b) if for every $[x_1, x_2]$ in (a, b), the graph of ϕ on $[x_1, x_2]$ lies on or below the line segment connecting the points $(x_1, \phi(x_2))$ and $(x_2, \phi(x_2))$. In other words, the region above the graph of ϕ is convex.
 - 2. FREQUENTLY CITED AND OTHERWISE IMPORTANT THEOREMS

3. Examples

3.1. The Dirichlet Function. This is the function defined on [0, 1] by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

This function is integrable, but not Riemann-integrable. It is defined on a finite interval, but has unbounded variation.

3.2. The Cantor Set. You know what this is. It is uncountable, but has measure 0.

3.3. The Cantor-Lebesgue Function. Singular, but not constant. Has bounded variation.