ANALYSIS 6310 REFERENCE

"Well, this is easy." - Sergei Kuznetsov

1. Definitions

There are more than a few. I'll use \bar{R} for $\mathbb{R} \cup\{ \pm \infty\}$.
Partition: A partition of $[a, b]$ is a collection of points $\left\{x_{0}, \ldots, x_{m}\right\}$ so that $x_{0}=$ $a, x_{m}=b$ and $x_{i-1}<x_{i}$ for $i=1, \ldots, m$.
Variation: The variation of f over $[a, b]$ is defined by

$$
V=V[f ; a, b]=\sup _{\Gamma} S_{\Gamma},
$$

where S_{Γ} is the sum

$$
\sum_{i=1}^{m}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

and the supremum is taken over all partitions Γ of $[a, b]$. Intuitively, the variation is how much f moves up and down over the interval $[a, b]$.
Function of Bounded Variation: one with $V[f ; a, b]$ finite.
Function of Unbounded Variation: one with $V[f ; a, b]=+\infty$.
Positive Variation: The positive variation of f over $[a, b]$ is defined by

$$
P=P[f ; a, b]=\sup _{\Gamma} P_{\Gamma}
$$

where

$$
P_{\Gamma}=\sum_{i=1}^{m}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{+}
$$

and the supremum is taken over all partitions Γ of $[a, b]$. Intuitively, the positive variation is how much f moves up over the interval $[a, b]$.
Negative Variation: The negative variation of f over $[a, b]$ is defined by

$$
N=N[f ; a, b]=\sup _{\Gamma} N_{\Gamma}
$$

where

$$
N_{\Gamma}=\sum_{i=1}^{m}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{-}
$$

and the supremum is taken over all partitions Γ of $[a, b]$. Intuitively, the negative variation is how much f moves down over the interval $[a, b]$.
Rectifiable Curve: Intuitively, a curve with finite length. Formally, the length L of a curve C with coordinate functions $\phi:[a, b] \rightarrow \mathbb{R}$ and $\psi:[a, b] \rightarrow \mathbb{R}$ is defined as the supremum (over Γ) of the sums

$$
L(\Gamma)=\sum_{i=1}^{m} \sqrt{\left(\phi\left(t_{i}\right)-\phi\left(t_{i-1}\right)\right)^{2}+\left(\psi\left(t_{i}\right)-\psi\left(t_{i-1}\right)\right)^{2}}
$$

where Γ is a partition $\left\{t_{0}=a, \ldots, t_{m}=b\right\}$ of $[a, b]$. We say C is a rectifiable curve if L is finite.
Norm of a Partition: The norm $|\Gamma|$ of a partition Γ is the length of the largest interval of Γ. That is, if $\Gamma=\left\{x_{0}, \ldots, x_{n}\right\},|\Gamma|=\max _{i}\left\{x_{i}-x_{i-1}\right\}$.
Riemann-Stieltjes Integral: Intuitively, the Riemann integral with a change of variables built in. Formally, let f and ϕ be two functions which are defined and finite on a finite interval $[a, b]$. If $\Gamma=\left\{a=x_{0}<x_{1}<\cdots<x_{m}=b\right\}$ is a partition of $[a, b]$, we arbitrarily select intermediate points $\left\{\xi_{i}\right\}_{i=1}^{m}$ satisfying $x_{i-1} \leq \xi_{i} \leq x_{i}$, and write

$$
R_{\Gamma}=\sum_{i=1}^{m} f\left(\xi_{i}\right)\left(\phi\left(x_{i}\right)-\phi\left(x_{i-1}\right)\right) .
$$

R_{Γ} is called a Riemann-Stieltjes sum for Γ, and of course deponds on ξ_{i}, f, ϕ, etc, but we don't bother to indicate this dependence in our notation. Then, if $I=\lim _{|\Gamma| \rightarrow 0} R_{\Gamma}$ exists and is finite, that is, if given $\epsilon>0$ there is a $\delta>0$ such that $\left|I-R_{\Gamma}\right|<\epsilon$ for any Γ satisfying $|\Gamma|<\delta$, then I is called the Riemann-Stieltjes integral of f with respect to ϕ on $[a, b]$, and denoted

$$
I=\int_{a}^{b} f(x) d \phi(x)=\int_{a}^{b} f d \phi
$$

Step Function: A function ϕ whose domain may be partitioned into finitely many intervals so that ϕ is constant on each interval.
Lebesgue Outer Measure: Intuitively, the smallest volume of intervals that cover E. Formally, let E be a subset of \mathbb{R}^{n}. Cover E by a countable collection S of n-dimensional closed intervals I_{k}, and let

$$
\sigma(S)=\sum_{I_{k} \in S} v\left(I_{k}\right),
$$

where v is the n-volume of the interval I_{k}. The Lebesgue outer measure (or exterior measure) of E, denoted $|E|_{e}$, is defined by

$$
|E|_{e}=\inf \sigma(S)
$$

where the infimum is taken over all such covers S of E.
Lebesgue Measurable Set: Intuitively, a set which is well approximated by a collection of intervals. Formally, a subset E of \mathbb{R}^{n} is said to be Lebesgue measurable, or simply measurable, if given $\epsilon>0$, there exists an open set G such that

$$
E \subset G \text { and }|G-E|_{\epsilon}<\epsilon
$$

(Note that open sets are precisely those that can be expressed as a countable union of open intervals, hence the intuitive interpretation.)
Lebesgue Measure: If E is Lebesgue measurable, we define its measure $|E|$ to be its outer measure $|E|_{e}$. Intuitively, this is the volume of E.
σ-Algebra: A collection of sets Σ that is closed under complements, countable unions, and countable intersections. (The first two properties imply the third.)
Borel Set: A set obtainable by complements, countable unions, and countable intersections from open sets in finitely many steps. Alternatively, a member of the σ-algebra generated by the open subsets of \mathbb{R}^{n}.

Almost Everywhere: A property is said to hold almost everywhere (or a.e if we're feeling lazy) on a set E, if the set of points of E where it does not hold has measure zero.
Measurable Function: A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ so that the preimage of each interval $(a, \infty]$ is a measurable set for each finite $a \in \mathbb{R}$. Intuitively, these are the functions so that the Lebesgue integral makes sense.
Upper-semicontinuous Function: Intuitively, a function whose limsups are not too large. Formally, $f: E \subset \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is upper semicontinuous (or usc if we're feeling lazy) at \mathbf{x}_{0} if

$$
\limsup _{\mathbf{x} \rightarrow \mathbf{x}_{0} ; x \in E} f(\mathbf{x}) \leq f\left(\mathbf{x}_{0}\right)
$$

Alternatively, we have exactly one half of the $\epsilon-\delta$ definition of continuity: f is usc at \mathbf{x}_{0} if for all $\epsilon>0$ there exists $\delta>0$ so that for all $\mathbf{x} \in E$ with $\left|\mathbf{x}-\mathbf{x}_{0}\right|<\delta$ it follows that

$$
f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)<\epsilon
$$

Lower-semicontinuous Function: Intuitively, a function whose liminfs are not too small. Formally, $f: E \subset \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is lower semicontinuous (or lsc if we're feeling lazy) at \mathbf{x}_{0} if

$$
\liminf _{\mathbf{x} \rightarrow \mathbf{x}_{0} ; x \in E} f(\mathbf{x}) \geq f\left(\mathbf{x}_{0}\right)
$$

Alternatively, we have the other half of the $\epsilon-\delta$ definition of continuity: f is lsc at \mathbf{x}_{0} if for all $\epsilon>0$ there exists $\delta>0$ so that for all $\mathbf{x} \in E$ with $\left|\mathbf{x}-\mathbf{x}_{0}\right|<\delta$ it follows that

$$
-\epsilon<f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)
$$

Property \mathscr{C} : Intuitively, discontinuous in only a set of arbitrarily small measure. Formally, f has property \mathscr{C} on E if given $\epsilon>0$, there is a closed set $F \subset E$ such that
(1) $|E-F|<\epsilon$
(2) f is continuous relative to F.

If E is measurable, then this is equivalent to f being measurable on E. (This definition appears to be endemic to our textbook.)
Convergence in Measure: A sequence of functions f_{k} is said to converge in measure to f on E (written $f_{k} \xrightarrow{m} f$) if for every $\epsilon>0$,

$$
\lim _{k \rightarrow \infty}\left|\left\{x \in E:\left|f(\mathbf{x})-f_{k}(\mathbf{x})\right|>\epsilon\right\}\right|=0
$$

Intuitively, the size of the set where f_{k} is far from f can be made to have arbitrarily small measure by choosing k large.
Lebesgue Integral: This is defined in two steps. For the first step, let $f: E \subset \mathbb{R}^{n} \rightarrow$ \bar{R} be a non-negative function. Define

$$
R(f, E)=\left\{(\mathbf{x}, y) \in \mathbb{R}^{n+1}: \mathbf{x} \in E, y \in \mathbb{R}, 0 \leq y \leq f(\mathbf{x})\right\}
$$

This is the region between 0 and the graph of f. If $R(f, E)$ is measurable, we define the Lebesgue integral of f orever E as

$$
|R(f, E)|_{(n+1)}=\int_{E} f(\mathbf{x}) d \mathbf{x}
$$

In the case that f is not non-negative, we define

$$
\int_{E} f(\mathbf{x}) d \mathbf{x}=\int_{E} f^{+} d \mathbf{x}-\int_{E} f^{-} d \mathbf{x}
$$

provided that at least one of the integrals on the right is finite.
Simple Function: A function f is simple if it takes finitely many values.
Integrable Function: A function $f: E \subset \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is integrable if $\int_{E} f$ exists and is finite.
L^{p} Space: $L^{p}(E), 0<p<\infty$ is the set of functions $f: E \rightarrow \overline{\mathbb{R}}$ so that $|f|^{p}$ is integrable over E. In particular, if f is integrable, $f \in L(E)$.
Equimeasurable: Two functions $f, g: E \subset \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ are equimeasurable or equidistributed if

$$
|\{\mathbf{x} \in E: f(\mathbf{x})>\alpha\}|=|\{\mathbf{x} \in E: f(\mathbf{x})>\alpha\}|
$$

for all α. In the notation of $\S 5.4, \omega_{f, E}=\omega_{g, E}$.
Convolution: If f and g are measurable functions in \mathbb{R}^{n}, their convolution $(f * g)(\mathbf{x})$ is defined by

$$
(f * g)(\mathbf{x})=\int_{\mathbb{R}^{n}} f(\mathbf{x}-\mathbf{t}) g(\mathbf{t}) d \mathbf{t}
$$

Set Function: A set function is a real-valued function F defined on a σ-algebra Σ of measurable sets such that
(1) $F(E)$ is finite for every $E \in \Sigma$,
(2) F is countably additive; i.e., if $E=\cup_{k} E_{k}$ is a union of disjoint $E_{k} \in \Sigma$, then

$$
F(E)=\sum_{k} F\left(E_{k}\right) .
$$

Indefinite Integral: If $f \in L(A)$, where A is a measurable subset of \mathbb{R}^{n}, the indefinite integral of f is defined to be the set function

$$
F(E)=\int_{E} f
$$

where E is any measurable subset of A.
Continuous Set Function: A set function $F(E)$ is called continuous if $F(E) \rightarrow 0$ as the diameter $\sup \{|\mathbf{x}-\mathbf{y}|: \mathbf{x}, \mathbf{y} \in E\}$ tends to 0 ; that is, $F(E)$ is continuous if, given $\epsilon>0$, there exists $\delta>0$ such that $|F(E)|<\epsilon$ whenever the diameter of E is less than δ.
Absolutely Continuous Set Function: A set function F is called absolutely continuous if $F(E)$ tends to zero as the measure of E tends to zero. If you like ϵ s and δ s, F is absolutely continuous if given $\epsilon>0$, there exists $\delta>0$ such that $|F(E)|<\epsilon$ whenever the measure of E is less than δ.
Hardy-Littlewood Maximal Function: If f is a function defined on \mathbb{R}^{n} and integrable over every cube Q, we define the Hardy-Littlewood maximal function of f by

$$
f^{*}(\mathbf{x})=\sup \frac{1}{|Q|} \int_{Q}|f(\mathbf{y})| d \mathbf{y}
$$

where the supremum is taken over all Q with edges parallel to the coordinate axes and center \mathbf{x}. Other sources tend to define this in terms of balls centered at \mathbf{x} rather than cubes.

Weak $L\left(\mathbb{R}^{n}\right)$: A function f belongs to weak $L\left(\mathbb{R}^{n}\right)$ if there is a constant c independent of α so that

$$
\left\lvert\,\left\{\mathbf{x} \in \mathbb{R}^{n}:|f(\mathbf{x})|>\alpha\right\} \leq \frac{c}{\alpha}\right.
$$

for all $\alpha>0$. These are functions that obey Tchebyshev's Inequality except they get the constant wrong.
Locally Integrable: A function f is locally integrable on E if it is integrable over every bounded measurable subset of E.
Point of Density: \mathbf{x} is a point of density of E if

$$
\lim _{Q \searrow \mathbf{x}} \frac{|E \cap Q|}{|Q|}=1
$$

Point of Dispersion: \mathbf{x} is a point of dispersion of E if

$$
\lim _{Q \searrow \mathbf{x}} \frac{|E \cap Q|}{|Q|}=0 .
$$

Cover in the Sense of Vitali: A family K of cubes is said to cover a set E in the Vitali sense if for every $\mathbf{x} \in E$ and $\eta>0$, there is a cube in K containing \mathbf{x} whose diameter is less than η.
Absolutely Continuous Function: A finite function f on a finite interval $[a, b]$ is said to be absolutely continuous if given $\epsilon>0$, there exists $\delta>0$ such that for any collection $\left\{\left[a_{i}, b_{i}\right]\right\}$ (finite or countable) of nonoverlapping subintervals of $[a, b]$,
Singular Function: A function f is singular on $[a, b]$ if f^{\prime} is zero a.e. in $[a, b]$.
Convex Function: Let ϕ be defined and finite on an interval (a, b). We say ϕ is convex in (a, b) if for every $\left[x_{1}, x_{2}\right]$ in (a, b), the graph of ϕ on $\left[x_{1}, x_{2}\right]$ lies on or below the line segment connecting the points $\left(x_{1}, \phi\left(x_{2}\right)\right)$ and $\left(x_{2}, \phi\left(x_{2}\right)\right)$. In other words, the region above the graph of ϕ is convex.

2. Frequently Cited and Otherwise Important Theorems

3. Examples

3.1. The Dirichlet Function. This is the function defined on $[0,1]$ by

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

This function is integrable, but not Riemann-integrable. It is defined on a finite interval, but has unbounded variation.
3.2. The Cantor Set. You know what this is. It is uncountable, but has measure 0 .
3.3. The Cantor-Lebesgue Function. Singular, but not constant. Has bounded variation.

