INTRO TO SHEAVES AND ABELIAN CATEGORIES

SEBASTIAN BOZLEE

1. INTRO

Today I'd like to talk about what sheaves are, and why we can do homological algebra on
them.

2. SHEAVES

Fix a topological space X and consider the set
C(X)=A{f:X = R| fis continuous}.

These functions have one key property, namely an element f of C(X) can be specified by
defining it on an open cover of X. (Picture: two functions defined on halves of an interval.
Since they agree on overlaps, they define a single continuous function from the interval to
R.)

Our goal will be to define a mathematical object which abstracts this idea of “data on a
topological space that can be defined on an open cover.” We shall call such objects sheaves.

In order to make sense of defining f on some open subset U C X, we need the notion
of function restriction, which is a group homomorphism —|y : C(X) — C(U). So as a first
step toward defining a sheaf we should abstract “data on a topological space that can be
restricted to smaller open subsets.” The definition is surprisingly simple.

Definition. Let Open(X) be the category whose elements are the open subsets of X, with
an arrow V — U if and only if V C U.
A Presheaf (of abelian groups) on X is a contravariant functor .# : Open(X)” — Ab.

What does this mean? It is worth expanding the definition.

Definition. (Expanded) A Presheaf on a topological space X consists of the data

(i) For each open set U of X, an abelian group .# (U).
(ii) For each inclusion of open sets V' C U, a restriction morphism pyy : F(U) —
F(V).
subject to the conditions

(i) pyy = idy for all U.
(ii) For all W CV C U, pyw © puv = puw-

Example: Let X be a topological space. We may define a presheaf C' on X by taking, for
each open subset U of X,

CWU)={f:U—R| fis continuous.}

Date: September 20, 2016.



2 SEBASTIAN BOZLEE

We take the group homomorphisms pyy @ C(U) — C(V) to be defined by puv(f) = flv.
This defines a sheaf C' on X.

If X is a smooth manifold, we can replace “continuous” by ”differentiable” or “C*” and
obtain a presheaf again.

This example plays such a strong role in our mental image of sheaves that when f € Z(U),
for any presheaf .7, we will often use the notation f| instead of pyy (f). Such an element
f is called a section of .%.

Example: If G is any abelian group, we can also define the constant presheaf .%; by
Fe(U)={f:U — G| f is constant}

with restriction maps the restriction of functions.

Definition. A morphism of presheaves ¢ : . % — ¥ is a natural transformation from

F =Y.
Again, this is worth expanding:

Definition. (Expanded) A morphism of presheaves ¢ : .% — ¢ is a collection of group
homomorphisms ¢y : F(U) — 4(U), one for each open subset U of X, so that for all
V C U, the diagram

(U) —~9U)

U

commutes.

Altogether, we get a category of presheaves of abelian groups on X, denoted PreSh(X).
Now we are ready to define a sheaf.

Definition. A sheaf (of abelian groups) on a topological space X is a presheaf .% satisfying
the sheaf axiom:
Let {U,}aca be any collection of open sets of X and let U be their union. Then, given
sections f, € .Z (U,) for each a so that
fa’UaﬂUB = f5|UaﬂU5
for each «, B € A, there exists a unique element f € % (U) so that

fan = fOé
for all o € A.

Example: The presheaf of continuous functions on X is a sheaf.

(Picture of functions on two open subsets of an interval. Point out that we glue only when
we agree on overlaps. The reason gluing works is that a function is continuous if and only if
it is continuous in a neighborhood of each point.)

Example: The constant presheaf #p is not a sheaf.
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(Picture of constant functions on the disjoint union of two intervals. The reason that gluing
fails is that being a constant function is not the same as being constant in a neighborhood
of each point.)

An analogous definition that works is the constant sheaf G defined by

GU)={f:U— G| f is continuous}

where G is given the discrete topology. (Equivalently, G(U) is the set of locally constant
functions from U to G.)

Definition. A morphism between sheaves . and ¢ is a morphism of presheaves between
Z and 9.
The resulting category of sheaves of abelian groups on X is denoted Sh(X)

Remark: Although we have used the ability to define something locally as our motivation
for sheaves, we gain more by thinking in terms of sheaves than merely having this property
of functions present in our minds. Thinking in terms of sheaves also encourages us to think
of nice functions on all open subsets of the space X, rather than merely the globally defined
ones. This often gives us access to far more information.

Remark: We can often think of sheaves of abelian groups as collections of things that
are metaphorically nice functions on our space. This is not an empty idea. In algebraic
geometry, we think of the elements of arbitrary rings as functions on certain spaces, even
though we probably shouldn’t think of these ring elements as literally functions. One reason
this is excusable is that they are enough like functions to form a sheaf.

3. ADDITIVE CATEGORIES

Now that we know what sheaves are, let us suppose that we want to do homological algebra
on these things. This means that we need notions of exactness, kernels, quotients, images,
and homology. As a first step in this direction, we will define an additive category.

Definition. An additive category is a category A so that

(i) There is a zero object. (An object which is both initial and terminal.)
(ii) All pairwise products exist.
(iii) Each set Hom 4(B, C) is imbued with the structure of an abelian group so that given
f:A—=>B g,gd:B—Cand h:C — D,

ho(9+¢g)=hog+hog

and
(g+g)of=gof+gof.

Example: R-mod, Ab, Ch(A), Presheaves, Sheaves are additive categories.

By Ch(.A), I mean the category of chain complexes whose elements come from an additive
category A. (d od = 0 makes sense because each Hom-set is an abelian group.) The
morphisms are chain maps.
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Definition. A functor F' : A — B between additive categories is an additive functor if
for each X,Y € A, the map

Homy(X,Y) — Homg(F(X), F(Y))
f= E(f)

is a group homomorphism.

Definition. A kernel of a map f : A — B is a morphism ker(f) : K — A so that
foker(f) =0 and given any map g : Z — A so that fog =0, g factors uniquely through

ker(f):

When these exist, these are unique up to unique isomorphism, of course. Note that a
kernel is a morphism, not an object! When we are not being careful, we will sometimes use
the word kernel for the domain K.

Example: (Kernels in R-mod, Ch(A), PreSh(X), Sh(X).)

The kernel of ¢ : M — N in R-mod is what you expect it to be, namely the inclusion
map ker ¢ — M.

The kernel of a map of chain complexes ¢, : B, — C, is constructed as follows. For each
1, let K; be the domain of the kernel of the map ¢; : B; — C;. We obtain a differential
d; - K; — K;_1 as the unique map completing the following diagram:
ker ¢;

K, B, —2 - C,

et

ker ;1 Pi—1
i—1 Bi—l I C’i—l

The map ker ¢, : K, — B, is the kernel of ¢,. (When A is R-mod, the differentials of K,
are just the restrictions of B,’s.)

The kernel of a map of presheaves is constructed in a similar way. Let ¢ : % — ¢ be a
morphism of presheaves. For each U, we define £ (U) to be the domain of the kernel of the
map ¢y : F(U) = 4(U). We define restriction maps £ (U) — # (V) as the unique map
completing the diagram:

A (V) Z2(V) 2 9(()

The family of morphisms ker oy : #(U) — .Z(U) then define the kernel of a morphism of
presheaves.
Kernels of sheaves are defined in exactly the same way as kernels of presheaves.

The dual definition is that of a cokernel.
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Definition. A cokernel of a map f : A — B is a morphism coker(f) : B — C so that
coker(f)o f =0 and given any map g : B — Z so that go f = 0, g factors uniquely through
coker(f):

coker f

AL, ped o

Example: (Cokernels in R-mod, Ch(A), PreSh(X), Sh(X).) The cokernel of a map
¢: M — N in R-mod is the quotient map N — N/p(M).

The cokernel of a map of chain complexes ¢ : B, — C\ is done term-by-term, just as
before.

The cokernel of a map of presheaves is done term-by-term, just as before.

The cokernel of a map of sheaves is a bit more complicated. (Picture of representatives
that fail to glue in the presheaf cokernel of 27Z(S') — C(S').) In order to rectify the
problem of sections not gluing, we add in sections using a process called sheafification. It
turns out that sheafification defines an (exact) functor.

Definition. The image of f : A — B is the map ker(coker(f)) : K — B. The coimage of
f:A— B is the map coker(ker(f)): A — C.

Example: Images in R-mod.

Take any morphism ¢ : M — N. The cokernel is 7 : N — N/p(M), which has kernel the
inclusion p(M) — N, so the image of ¢ : M — N is inclusion ¢(M) — N.

For comparison, the kernel of ¢ is ker(y) — M, which has cokernel M — M/ ker(p) =
©(M), so the coimage of ¢ : M — N is the quotient map M — ¢(M).

Roughly speaking, the categorical image is what the image should be if you think of images
as subobjects of the codomain, while the coimage is what the image should be if you think
of images as quotients of the domain.

4. ABELIAN CATEGORIES

Definition. An abelian category is an additive category so that

(i) Every map has a kernel and a cokernel.
(ii) For all morphisms f, the natural map coim(f) — im(f) is an isomorphism.

What is this natural morphism? (Derivation in a diagram.)

Theorem. Fix an abelian category A. In this category,
(i) 0 > A — B is exact if and only if A — B is a monomorphism.
(i) A — B — 0 is exact if and only if A — B is an epimorphism.
(iii) 0 > A — B — 0 is exact if and only if A — B is an isomorphism.

Proof. (i) The cokernel of 0 — A is the identity map A 4 A, which has as kernel
0 — A. So the image of 0 - Ais 0 — A. Thus 0 - A — B is exact if and only if
0 — A is the kernel of A — B.
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So we are showing that being a monomorphism is the same as having kernel 0 — A.

Suppose first that A 7 B has kernel 0 — A. Let g, h be two morphisms Z — A so
that fog = f oh. Then, by linearity, f o (¢ — h) = 0. By the universal property
of kernels, g — h factors through 0 — A, so ¢ — h must be the zero morphism. This
implies g = h, so the defining property of monomorphisms is verified.

Conversely, suppose A L Bisa monomorphism. Suppose g : Z — A is a
morphism so that f o g = 0. Note that there is another map with this property,
namely the zero morphism, 0 : 7 — A. Since f is a monomorphism, g = 0. It
follows that g factors uniquely through 0 — A. Since g was arbitrary, this verifies
that 0 — A has the universal property of the kernel.

(Note: So far, we have only used that A is additive and kernels and cokernels
exist.)

(ii) Duality.
(iii) Suppose first that A — B is an isomorphism. Then A — B is both monic and epic,
so the sequence is exact by parts (i) and (ii).

Suppose conversely that 0 - A — B — 0 is exact. Then B — 0 is the cokernel
of A— B and 0 — A is the kernel of A — B. This makes the image of A — B the
morphism idg : B — B and the coimage of A — B the morphism ids : A — A. By
definition of abelian category, the natural map from the coimage, A, to the image,
B, is an isomorphism. The following diagram commutes:

A——=~B

0 A B 0

So the map A — B is an isomorphism.

O
Example: R-mod, Ab, Ch(A) (A is abelian), Presheaves, Sheaves are abelian categories.
Theorem. (Freyd-Mitchell Embedding Theorem) If A is a small abelian category, then there

is an exact, fully faithful functor from A into R-mod, which embeds A as a full subcategory
in the sense that Hom (M, N) = Hompg(M, N).
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