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The first section of these notes describes general solutions to linear, constant-coefficient,

homogeneous recurrence relations of arbitrary order, including the case that eigenvalues are

repeated. Our proofs will use linear algebra and a touch of abstract algebra instead of

generating functions. Accordingly, I hope that these notes will be accessible to a student

with a course or two of undergraduate linear algebra and some experience with arguments

involving divisibility.

We will then apply these results to sketch a derivation of the general solutions to ordinary

differential equations.

1. General solutions to recurrence relations

For the purpose of these notes, a sequence is a sequence of complex numbers (although

our results should hold if we replace C by any algebraically closed field). We will either write

a sequence as a list of numbers enclosed in parentheses or by a single expression enclosed

in parentheses. It will be convenient to index all sequences by the variable j, starting with

j = 0. To illustrate these conventions, (j) denotes the sequence of numbers (0, 1, 2, 3, 4, . . .)

and (2j) is the sequence (1, 2, 4, 8, 16, . . .).

The set of all sequences of complex numbers we denote by CN. This has the structure of

an infinite-dimensional complex vector space where the addition of two sequences (aj) and

(bj) is done coordinatewise (i.e. (aj) + (bj) = (aj + bj) ) and scalar multiplication is defined

by c(aj) = (caj). We will see that solutions to recurrence relations form finite-dimensional

subspaces of CN.

A linear homogeneous recurrence relation of order k (hereafter, a recurrence re-

lation of order k) is an equation of the form

(1) aj = c1aj−1 + c2aj−2 + · · ·+ ckaj−k.

where c1, c2, . . . , ck are complex numbers. A solution to a recurrence relation is a complex-

valued sequence (a1, a2, . . .) such that (1) holds for each j ≥ k. Such a sequence is called

a recurrence sequence of order k. Familiar examples of recurrence sequences include

geometric sequences and the Fibonacci numbers.
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To each recurrence relation of order k,

(2) aj = c1aj−1 + c2aj−2 + · · ·+ ckaj−k,

there is associated a characteristic polynomial of degree k,

f(λ) = λk − c1λk−1 − c2λk−2 − · · · − ck−1λ− ck.

The roots of the characteristic polynomial are called the eigenvalues of the recurrence

relation. We shall see that the characteristic polynomial of a recurrence relation is closely

related to its solutions.

Let Λ be the linear operator on sequences defined by Λ(aj) = (aj+1). The effect of Λ is to

shift the elements of the sequence by one space. For example,

Λ(3, 1, 4, 1, 5, . . .) = (1, 4, 1, 5, . . .).

Given a polynomial f(λ) = λk − c1λ
k−1 − c2λ

k−2 − · · · − ck−1λ − ck, we define a linear

operator f(Λ) by

f(Λ) = Λk − c1Λk−1 − c2Λk−2 − · · · − ck−1Λ− ckI.

where Λk is defined to be the composition of Λ with itself k times, i.e. a shift by k spaces,

and I is the identity operator. Given these definitions, for an arbitrary sequence (aj),

f(Λ)(aj) = (Λk − c1Λk−1 − c2Λk−2 − · · · − ck−1Λ− ckI)(aj)

= (aj+k − c1aj+k−1 − c2aj+k−2 − · · · − ck−1aj+1 − ckaj).

So, f(Λ)(aj) = (0) if and only if (aj) satisfies the recurrence relation (2).

In other words, ker f(Λ) is the solution set of (2). Since the kernel of a linear map is a

vector space, the solution set is a vector space. Therefore all we have to do to describe the

solution set of a recurrence relation is to find a basis for ker f(Λ). We will spend the rest of

these notes deriving a “nice” basis for ker f(Λ) related to the factorization of f(λ). Its basis

vectors will be called fundamental solutions.

Consider the correspondence between characteristic polynomials and solution sets

f(λ) 7→ ker f(Λ).

In the Lemma 2, we show that some of the “divisibility structure” of polynomials is carried

over by this correspondence to the “containment structure” of subspaces of CN. (For readers

familiar with lattices, this is the first part of a proof that the correspondence above is a

lattice homomorphism.)
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First, however, we will prove a lemma about polynomials. The proof can probably be

skipped on a first read, and can be found with more context in any book on abstract algebra

(we are essentially proving that C[λ] is a PID).

Lemma 1. If f(λ) and g(λ) are polynomials and h(λ) = gcd(f(λ), g(λ)), then there exist

polynomials p(λ) and q(λ) so that

p(λ)f(λ) + q(λ)g(λ) = h(λ).

Proof. Let I = {a(λ)f(λ) + b(λ)g(λ) | a(λ), b(λ) are polynomials }. Note that the sum of

any two elements of I lies in I and a polynomial multiple of any element of I lies in I. We

will now show that I is equal to the set

J = {c(λ)k(λ) | c(λ) is a polynomial }

for some polynomial k(λ) in I.

Tentatively, we select k(λ) to be a polynomial of I of least degree. Let d(λ) be some

polynomial in I. By the division algorithm for polynomials, we can write

d(λ) = c(λ)k(λ) + r(λ)

where the remainder r(λ) is either 0 or a polynomial of degree strictly less than the degree

of k(λ). Rearranging the equation above,

d(λ)− c(λ)k(λ) = r(λ).

Since d(λ) ∈ I and k(λ) ∈ I, and I is closed under addition and polynomial multiples,

d(λ) − c(λ)k(λ) ∈ I, so r(λ) ∈ I. Recall k(λ) which was chosen as the polynomial of least

degree in I, and r(λ) was chosen to be zero or to have degree less than k(λ). Therefore

r(λ) = 0, so k(λ) | d(λ). Since d(λ) was arbitrary, I ⊆ J .

On the other hand, since J consists of multiples of an element of I and I contains all

multiples of its elements, J ⊆ I.

Since k(λ) ∈ I, we have that k(λ) = p1(λ)f(λ) − q1(λ)g(λ). Now, since I = J and

f(λ) ∈ I, k(λ) | f(λ). Similarly, k(λ) | g(λ). That is, k(λ) is a common divisor of f(λ)

and g(λ). Therefore, by definition of gcd, k(λ) | h(λ). On the other hand, we note that

since h(λ) divides f(λ) and g(λ), h(λ) divides p1(λ)f(λ) and q1(λ)g(λ). It follows that h(λ)

divides their sum, p1(λ)f(λ) + q1(λ)g(λ) = k(λ). Since k(λ) divides h(λ) and vice versa,

h(λ) = Ck(λ) for some constant C. Then

h(λ) = Cp1(λ)f(λ) + Cq1(λ)g(λ).

Taking p(λ) = Cp1(λ) and q(λ) = Cp2(λ), we have the result. �
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Lemma 2. If f(λ) and g(λ) are polynomials and h(λ) = gcd(f(λ), g(λ)), then

kerh(Λ) = ker f(Λ) ∩ ker g(Λ).

In particular, if g(λ) | f(λ), then ker g(Λ) is a subspace of ker f(Λ).

Proof. Let h(λ) = gcd(f(λ), g(λ)). By the preceding lemma, there are polynomials p(λ), q(λ)

so that p(λ)f(λ) + q(λ)g(λ) = h(λ). Let (aj) ∈ ker f(Λ) ∩ ker g(Λ). Then

h(Λ)(aj) = (p(Λ)f(Λ) + q(Λ)g(Λ))(aj) = p(Λ)(0) + q(Λ)(0) = (0).

So ker f(Λ) ∩ ker g(Λ) ⊆ kerh(Λ).

Conversely, let (aj) ∈ kerh(Λ). Since h(λ) | f(λ), there is a polynomial p(λ) so that

f(λ) = p(λ)h(λ). Then

f(Λ)(aj) = p(Λ)h(Λ)(aj) = p(Λ)(0) = (0).

So, (aj) ∈ ker f(Λ). Similarly, (aj) ∈ ker g(Λ). Therefore, (aj) ∈ ker f(Λ) ∩ ker g(Λ), so

ker f(Λ) ∩ ker g(Λ) ⊇ kerh(Λ). The result follows. �

We will also require the following fact.

Lemma 3. The solution set of an order k recurrence has dimension k. Equivalently,

dim ker f(Λ) = deg f(λ).

Proof. Let f(λ) be the characteristic polynomial of the recurrence. The solution set is

ker f(Λ). Let ϕ : ker f(Λ) → Ck be the map that takes a solution (aj) to its first k values,

(a0, a1, . . . , ak−1). This is clearly linear. It is bijective since any choice of initial values

a0, a1, . . . , ak−1 uniquely determines a solution sequence via the recurrence relation: i.e.

ak = c1ak−1 + c2ak−2 + · · ·+ cka0,

ak+1 = c1ak + c2ak−1 + · · ·+ cka1,

...

Therefore ϕ is an isomorphism of vector spaces. Since Ck has dimension k, we conclude that

ker f(Λ) has dimension k. �

Suppose f(Λ) =
∏q

l=1(Λ − λl)kl is a characteristic polynomial, where the λl are distinct.

By Lemma 2, ker((Λ − λl)
kl) is a subspace of ker f(Λ) for each l. As a first step toward

finding a fundamental solution set for the corresponding recurrence relation, we start by

finding a basis of ker((Λ− λl)kl) for each l.

The case where λl = 0 is handled separately.
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Lemma 4. ker Λn has the basis Bn0 = {(δj0), (δj1), . . . , (δj,n−1)}, where

δij =

1 if i = j

0 if i 6= j

Proof. Bn0 is clearly linearly independent (its elements have nonzero entries in different co-

ordinates) and clearly belongs to ker Λn (since shifting by n gets rid of all nonzero entries).

Since |Bn0 | = n and ker Λn has dimension n, Bn0 is a basis. �

Lemma 5. Let λ be a nonzero complex number and let n be a positive integer. Then ker((Λ−
λ)n) has the basis Bnλ = {(λj), (jλj), . . . , (jn−1λj)}.

Proof. We will first prove that for each n, {(λj), (jλj), . . . , (jn−1λj)} ⊆ ker((Λ − λ)n). The

proof is by induction.

Let n = 1. Then (Λ− λ)(λj) = (λj+1 − λλj) = (0), so (λj) ∈ ker(Λ− λ).

Suppose {(λj), (jλj), . . . , (jn−1λj)} ⊆ ker((Λ − λ)n) for n = k, for some integer k ≥ 1.

Then by Lemma 2, {(λj), (jλj), . . . , (jn−1λj)} ⊆ ker((Λ − λ)n+1). It remains to show that

(jnλj) ∈ ker((Λ− λ)n+1). Now,

(Λ− λ)n+1(jnλj) = (Λ− λ)n((j + 1)nλj+1 − jnλj+1)

= (Λ− λ)n
(
λ

(
n

1

)
jn−1λj + λ

(
n

2

)
jn−2λj + · · ·+ λ

(
n

n

)
λj
)

= (0)

where we have used the binomial theorem on the second line and the induction hypoth-

esis on the third. Therefore, {(λj), (jλj), . . . , (jnλj)} ⊆ ker((Λ − λ)n+1). By induction,

{(λj), (jλj), . . . , (jn−1λj)} ⊆ ker((Λ− λ)n) for all n ∈ N.

Next we will show that (jnλj) 6∈ Span {(λj), (jλj), . . . , (jn−1λj)} for all n. The result is

trivial for n = 1. For n > 1, suppose that K1, K2, . . . , Kn are complex numbers so that

(jnλj) = K1(λ
j) +K2(jλ

j) + · · ·+Kn(jn−1λj).

But then

jnλj = K1λ
j +K2jλ

j + · · ·+Knj
n−1λj,

which implies (this is where we use that λ is nonzero)

jn = K1 +K2j + · · ·+Knj
n−1

for all j. This is impossible, since the left hand side is an nth degree polynomial and the

right hand side is an (n−1)st degree polynomial. So (jnλj) 6∈ Span {(λj), (jλj), . . . , (jn−1λj}
for all n.
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Therefore, for all n, {(λj), (jλj), . . . , (jn−1λj)} is a linearly independent subset of ker((Λ−
λ)n) containing n vectors. Since ker((Λ − λ)n) has dimension n, {(λj), (jλj), . . . , (jn−1λj)}
is a basis of ker((Λ− λ)n). �

So far we have characterized the solution sets of recurrence relations with a single eigen-

value, possibly repeated. For the remaining recurrences it suffices to piece together the

solutions corresponding to each eigenvalue.

Theorem 6. Let f(λ) =
∏q

l=1(λ − λl)
kl be the characteristic polynomial of a kth order

recurrence relation with q distinct eigenvalues λ1, λ2, . . . , λq with respective multiplicities

k1, k2, . . . , kq. Then the solution set of the recurrence has the basis of fundamental solutions

q⋃
l=1

Bklλ .

Proof. The proof is by induction on q. The q = 1 case was proven in Lemmas 4 and 5.

Suppose the result holds for some integer q ≥ 1. Let f(λ) =
∏q+1

l=1 (λ − λl)
kl be the

characteristic polynomial of a kth order recurrence relation with q + 1 distinct eigenvalues

λ1, λ2, . . . , λq+1 with respective multiplicities k1, k2, . . . , kq+1. We split ker f(Λ) into two

subspaces U = ker
(∏q

l=1(Λ− λl)kl
)

and V = ker((Λ − λq+1)
kq+1), with U corresponding to

the first q eigenvalues, and V corresponding to the (q + 1)st eigenvalue. By the induction

hypothesis, the first subspace, U has the basis
⋃q
l=1 B

kl
λ . By Lemmas 4 and 5, the second

subspace V has the basis Bkq+1

λ .

By Lemma 2, since the polynomials
∏q

l=1(λ−λl)kl and (λ−λq+1)
kq+1 that determine each

subspace are relatively prime, U ∩ V = ker I = {(0)}. It follows

dim (U + V ) = dimU + dimV − dimU ∩ V

= dimU + dimV

=

q∑
l=1

kl + kq+1

= deg f(λ)

= dim ker f(Λ).

Since U + V is a subspace of ker f(Λ) with dimension equal to that of ker f(Λ), U + V =

ker f(Λ). Furthermore, since U ∩ V = {(0)}, U + V is a direct sum. Therefore, the union of

the bases,
⋃q+1
l=1 B

kl
λ , is a basis of ker f(Λ). The result follows by induction. �

By comparing fundamental solution sets, we obtain the following corollary. (Readers

familiar with lattices may recognize that this completes the proof that f(λ) 7→ ker f(Λ) is a

lattice homomorphism.)
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Corollary 7. If f(λ) and g(λ) are polynomials and h(λ) = lcm(f(λ), g(λ)), then

kerh(Λ) = ker f(Λ) + ker g(Λ).

In particular, ker f(Λ) ⊆ ker g(Λ) only if f(λ) | g(λ).

2. General solutions to differential equations

A linear, constant-coefficient, homogeneous differential equation of order k

(hereafter, a differential equation of order k) is an equation of the form

(3) y(k) = c1y
(k−1) + · · ·+ ck−1y

′ + cky,

where y is understood to be a complex-valued function on the complex plane, and y(n) denotes

the nth derivative of y. A solution is a differentiable function y : C→ C so that the above

equation holds. (Readers who are uncomfortable with derivatives of complex functions may

assume y : R→ C instead; in this case our argument will only give analytic solutions - that

is, solutions y : R → C so that y is equal to its Taylor series. These are actually the only

solutions.)

Complex differentiable functions are analytic, so we may rewrite the equation above using

the Taylor series of y. If y : C → C is an analytic function with Taylor series y(x) =∑∞
i=0(ai/i!)x

i, let

S(y) = (aj)

denote the “sequence of derivatives” of y. S is an injective linear function. Notice S(y′) =

ΛS(y). Applying S to both sides of differential equation (3), we obtain an equation on

sequences:

ΛkS(y) = c1Λ
k−1S(y) + · · ·+ ck−1ΛS(y) + ckS(y).

In other words, if y satisfies (3), then S(y) = (aj) is a solution to the recurrence relation

aj = c1a1 + · · ·+ ck−1aj−k+1 + ckaj−k.

Conversely, since S is injective, y solves differential equation (3) only if S(y) solves the

above recurrence relation. Therefore to find the solutions of (3), all we have to do is find

the solutions of the corresponding recurrence relation and then see what the solutions are a

Taylor series of.

Theorem 8. Consider the differential equation

(4) y(k) = c1y
(k−1) + · · ·+ ck−1y

′ + cky.
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Let f(λ) be the polynomial λk − c1λk−1 − · · · − ck−1λ − ck, and let λ1, . . . , λq be its distinct

roots, with respective multiplicities k1, . . . , kq. Then the set of solutions to (4) is{
q∑
i=1

ki∑
l=1

Ki,lx
leλix | Ki,l ∈ C for all i, l

}


