
INTRO TO CATEGORIES: PART 1

SEBASTIAN BOZLEE

1. Motivation

Category Theory is an organizing language for mathematics based on the central idea that
functions express relationships, and therefore a useful way to reason about and define
mathematical concepts is in terms of patterns of functions. Consider the following example.

Example: Let S and T be sets, and f a function between them.

If. . . Then. . .

f is injective |S| ≤ |T |, S is “isomorphic” to the subset f(S) of T

f is surjective |S| ≥ |T |, T is like S with a few elements identified, “quotient set of S”

f is bijective |S| = |T |, S and T are “isomorphic sets.”

So far so good. Something similar works for groups, only this time we should use group
homomorphisms instead of arbitrary functions. Let G and H be groups and let f : G→ H
be a group homomorphism.

If. . . Then. . .

f is injective G is isomorphic to the subgroup of H, namely f(G)

f is surjective H is isomorphic to a quotient group of G, namely G/ ker(f)

f is bijective G and H are isomorphic groups.

Just knowing that a function of a certain kind exists tells us something, both in the
example of sets and the example of groups. Even better, this knowledge tells us the same
things about sets as they do about groups.

2. Categories

With this as our motivation, let us define a category. Informally, a category is a collection
of objects and a collection of functions between them. Formally,

Definition. A category C consists of

(i) A class of objects, Ob(C ).
(ii) For each pair of objects, A, B, a set HomC (A,B).

An element φ ∈ HomC (A,B) is called a morphism or arrow, and is usually

written φ : A → B or A
φ→ B. The object A is called the domain of φ and the

object B is called the codomain of φ.
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(iii) For each pair of morphisms φ : A → B and ψ : B → C, a composite morphism
ψ ◦ φ : A→ B.

subject to the conditions that:

(i) Composition of morphisms is associative: if A
φ→ B

ψ→ C
ρ→ D, then (ρ ◦ ψ) ◦ φ =

ρ ◦ (ψ ◦ φ).

(ii) For each object B, there is a morphism B
1B→ B so that for each morphism A

φ→ B,

1B ◦ φ = φ and for each morphism B
ψ→ C, ψ ◦ 1B = ψ.

The word “class” here means a collection, just like a set, except it may be “too large” to
behave in all the ways that we expect a set to behave. Unless you are curious about careful
axiomatic set theory, you should regard this as a technicality.

Example: (Concrete Categories)

Category Objects Morphisms
Set Sets functions
Grp Groups group homomorphisms
Ab Abelian groups group homomorphisms

R-Mod Real vector spaces linear maps
Top Topological spaces continuous maps

Composition is in each case function composition.
It’s good to think about why each of these satisfies the axioms of a category. For definite-

ness, let’s check the category of groups:
We have objects and morphisms, so the first two parts of the definition work out no

problem. The composition of two group homomorphisms is again a group homomorphism,
so the composition is well-defined. Function composition is always associative. Finally, we
have identity morphisms, namely the functions idG : G→ G taking g 7→ g. Clearly, each idG
is a group homomorphism, and they compose in the way that the definition wants them to.

The category Set shows why we need to talk about classes, rather than sets: there is no
set of all sets.

Example: (Categories don’t need morphisms to actually be functions.)
Category Objects Morphisms Composition

Poset category of (P,≤) Elements of P if A ≤ B, a unique mor-
phism A→ B

the unique arrow

Group category of G One object, ∗ ∗ g→ ∗ for each element
g ∈ G

(∗ g→ ∗) ◦ (∗ h→ ∗) = ∗ gh→ ∗

It’s really interesting to think about why these are categories. Let’s check the axioms for
a poset category:

We have objects and morphisms, so those parts of the definition are clearly okay. Think
about composition: if we have morphisms A→ B and B → C, this means that A ≤ B and
B ≤ C. Having a composite morphism A → C means that A ≤ C. So the reason that our
definition of composition works is that partial orders are transitive! Next, associativity holds
trivially: since there is a unique morphism A → C, any two morphisms A → C are equal.
Finally, we need identity morphisms A → A for each object A. In other words, we need
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A ≤ A for all A ∈ P . The reason that we have identity morphisms is that partial orders are
reflexive.

Exercise 1. Prove that the group category of a group G is a category. Are there any group
axioms that you don’t need?

3. Functors

In the spirit of category theory, we should not only study categories but “morphisms of
categories.” A functor is the right idea.

Definition. A functor F from a category C to a category D is a mapping that associates
to each object A of C an object F (A) of D and that associates to each morphism f : A→ B
in C a morphism F (f) : F (A)→ F (B) in D , subject to the constraints that

(i) F (1A) = 1F (A) for every A in C , and
(ii) F (f ◦ g) = F (f) ◦ F (g) for every pair of composable morphisms f : A → B and

g : B → C in C .

Example: (Forgetful functors) We can often get a functor just by “forgetting” some
structure of our objects. For example, there are functors from Grp, Ab, R-mod, and Top
to Set that take each object to its underlying set and each morphism to itself.

Example: (Free group functor) Given a set S, we can form the free group generated
by S. This is the group F (S) that has underlying set consisting of all words in the symbols
s and s−1 for each s ∈ S, without any adjacent symbols s and s−1. The multiplication is
defined by concatenating strings and removing any adjacent symbols s and s−1 that result.

Given a function f : S → T in Set, we get a morphism Ff : F (S)→ F (T ) by taking each
symbol s in a word to the symbol f(s) and each symbol s−1 to the symbol f(s)−1.

As a general moral, we should expect that if we have a systematically defined way to
match objects between categories then that matching can naturally be extended to a functor
by defining what it does to morphisms.

If we have two functors F : C → D and G : D → E , then there is a functor F ◦G : C → D
defined in the obvious way. This gives us a category of categories! For technical reasons,
we need to restrict to small categories: categories whose class of objects is actually a set.
With this in mind we can add to our list of categories:

Category Objects Morphisms
Cat Small categories functors

4. Wrap up

Today we’ve defined a category, which was an abstract definition capturing “things and
structure preserving maps between them.” We next defined a notion of functor, which was ei-
ther “a structure preserving map between categories” or a “systematic assignment of objects
of one category to objects of another category.”

Next time, we’ll talk a little bit more about functors, then give categorical ways of defining
things like subobjects, quotients, and isomorphisms.
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