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Let R be a commutative ring with unity.

Definition 1. An R-module M is injective if, for any injective R-module homomorphism
f : N ′ → N and homomorphism g : N ′ → M there exists a function g̃ : N → M so that
g̃ ◦ f = g. That is, every solid diagram

0 // N ′

g

��

// N

~~
M,

where the row is exact, admits a completion.

Injective modules play an important theoretical role in homological algebra and algebraic
geometry. However, the definition is somewhat abstract. In this note, we will provide a
reinterpretation of injectivity that may feel more concrete.

An algebraically closed field is one in which every non-constant polynomial equation in
one variable has a root. We’d like to define an analogous notion for R-modules, which will
turn out to be equivalent to the notion of injective R-module. We should start by finding
an analogous kind of equation to ask for solutions to.

When working with fields the operations we have available to us are multiplication and
addition. Polynomials are precisely what pop out when you use these operations to combine
field elements and variables.

When working with R-modules, on the other hand, the operations we have available are
scalar multiplication and addition. The kinds of expressions that pop out when combining
these are the R-linear combinations of variables and module elements. Since an R-linear
combination of module elements is equal to another module element, any equation involving
R-linear combinations of variables and elements can be reduced to the form

r1x1 + r2x2 + · · ·+ rkxk = m

where the rs are ring elements, the xs are variables, and m is a module element. These are
the equations we will be interested in solving.

Although we only consider single-variable polynomials when defining an algebraically
closed field, here we will keep multi-variable equations. (However, see Lemma 8.) Our
experience with linear algebra tells us that solving a single equation of this kind is not very
interesting, so we should ask for solutions to systems of them. In fact, we will consider
infinitely many equations in infinitely many variables (with only finitely many variables in
an equation).
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Finally, we cannot ask that every system of equations has a solution. For example, if all
the rs in the equation above are zero and m is nonzero, it would be ridiculous to ask for
a solution. (In fact, there is a similar problem with polynomial equations over fields. This
is why we only consider non-constant polynomials in the definition of algebraically closed
field.) So we will need a restriction on the types of systems of equations we consider, which
we will call consistency.

We are now ready to state the definition.

Definition 2. Let M be an R-module. For any indexed set of indeterminates {xi}i∈I , a set

of equations {r(j)1 x
(j)
1 + r

(j)
2 x

(j)
2 + · · ·+ r

(j)
kj
x
(j)
kj

= mj}j∈J , where:

(1) each r
(j)
i ∈ R,

(2) each x
(j)
i is one of the xks, k ∈ I,

(3) and each mj ∈M ,

is called consistent if there is no R-linear combination of the equations resulting in 0 on
the left hand side and a non-zero element of M on the right.

An R-module M is algebraically closed if any consistent set of equations as above
admits a solution in M , that is, there is a function f : {xi}i∈I →M so that for all j in J ,

r
(j)
1 f

(
x
(j)
1

)
+ r

(j)
2 f

(
x
(j)
2

)
+ · · ·+ r

(j)
kj
f
(
x
(j)
kj

)
= mj.

Proposition 3. An R-module M is injective if and only if M is algebraically closed.

Proof. (=⇒) Suppose first that M is injective. Let X = {xi}i∈I be a set of indeterminates

and {r(j)1 x
(j)
1 + r

(j)
2 x

(j)
2 + · · · + r

(j)
kj
x
(j)
kj

= mj}j∈J be a consistent set of equations in M with

variables in X.
Let N ′ be the submodule of M generated by the mjs. Consider N = (N ′⊕R⊕X)/L where

L is the submodule generated by the elements r
(j)
1 x

(j)
1 + r

(j)
2 x

(j)
2 + · · · + r

(j)
kj
x
(j)
kj
− mj. The

natural map N ′ → N is injective since our set of equations was chosen to be consistent.
Since M is injective, there is an extension of the inclusion N ′ →M to N :

0 // N ′

��

// N

f~~
M

Then by the universal property of quotient modules, the restriction of f to the xis gives
a solution to the set of equations.

(⇐=) Suppose conversely that M is algebraically closed. Consider a diagram

0 // N ′

g

��

// N

M
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We want to find an extension of g to N . Note that we can factor g as

0 // N ′

��

// N

��
0 // N ′/ ker g

g

��

// N/ ker g

M

and that to extend g to N it is sufficient to extend g to N/ ker g. Therefore it is enough to
consider the case where g : N ′ →M is injective. For notational convenience, we may as well
take N ′ to be a submodule of M and g to be the inclusion.

Choose elements X = {xi}i∈I of N so that X and N ′ jointly generate N (i.e. RX +N ′ =
N .) Define a function N ′ ⊕ R⊕I → N by the identity on N ′ and by i 7→ xi on I. Let L
be the kernel of this map, and note that each element l of L can be written in the form

r
(l)
1 x

(l)
1 +r

(l)
2 x

(l)
2 + · · ·+r

(l)
kl
x
(l)
kl
−ml where each r

(l)
i ∈ R, each x

(l)
i ∈ I, and each ml ∈ N ′. This

gives us a corresponding set of equations {r(l)1 x
(l)
1 + r

(l)
2 x

(l)
2 + · · ·+ r

(l)
kl
x
(l)
kl

= ml}l∈L, consistent
since N ′ → N is injective.

Now, since this set of equations is consistent and M is algebraically closed, we can find a
function f : X →M satisfying them. By the universal property of quotients, this f induces
a homomorphism of R-modules f̃ : N →M making

0 // N ′

g

��

// N

f̃~~
M

commute, as required. �

I like this characterization since it explains why injective modules are “large” and “hard
to write down concretely,” since the same things are true of algebraically closed fields. It
suggests there should be an “algebraic closure,” and it is shown elsewhere that there is
one, called the injective hull. Furthermore, it gives an interpretation of finding an injective
resolution that feels dual to the usual method of finding a free resolution: we introduce
solutions to equations, then solutions to equations between the solutions, and so on.

The following standard facts on injective modules are easy to prove from this perspective.

Corollary 4. Injective modules are divisible.

Proof. Consider the equations rx = m. �

Corollary 5. Products of injective modules are injective modules.

Proof. Find solutions coordinate-wise. �

Corollary 6. If φ : R→ S is a surjective morphism of rings and M is an S-module so that
M is injective as an R-module, then M is injective as an S-module.

Proof. By definition of restriction of scalars, for any r1, . . . , rn ∈ R, x1, . . . , xn ∈M ,

r1x1 + · · ·+ rnxn = φ(r1)x1 + · · ·+ φ(rn)xn
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So any equation with coefficients in S is equivalent to an equation with coefficients in R.
Any lift of a consistent set of equations over S remains consistent over R, so we can find
solutions to a consistent set of equations by lifting to R and solving. �

A warning: if M is injective as an S-module, it does not follow that M is injective as
an R-module. For example, let R = C[a](a), and M = S = R/a. Then S is injective as
an S-module, since every module is injective over a field. However, S is not injective as an
R-module, since the equation ax = 1 does not admit a solution. The equation ax = 1 is
consistent over R, but inconsistent over S, since ax reduces to 0.

Recall Baer’s Lemma:

Lemma 7. (Baer’s Lemma) An R-module M is injective if and only if for each ideal I of R
and homomorphism of R-modules g : I →M there is an extension of g to R:

0 // I

g
��

// R

g̃~~
M

Translating this into our language of solving equations,

Lemma 8. (Baer’s Lemma, equation version) An R-module M is injective if and only if any
consistent set of equations of the form

{rjx = mj}j∈J
admits a solution, where each rj ∈ R, x is a variable, and each mj ∈M . We call such a set
of equations a single-variable consistent set of equations.

Proof. The forward implication is clear by Proposition 3.
Suppose M has solutions to single-variable consistent sets of equations. We will use Baer’s

criterion to show M is injective. Suppose I is an ideal of R and g : I → M is an R-module
homomorphism. Choose a system of generators {rj}j∈J of I and set mj = g(rj) for each
j ∈ J . Consider the set of equations {rjx = mj}j∈J . If there is an R-linear combination∑

j∈J sjrj of the rjs so that
∑

j∈J sjrj = 0, then

∑
j∈J

sjmj =
∑
j∈J

sjg(rj) = g

(∑
j∈J

sjrj

)
= 0,

so our set of equations is consistent. By hypothesis, there is an element x ∈ M so that
rjx = mj for all j ∈ J . Then the map R → M taking 1 7→ x is the required extension of
g. �

Examining the proof of the lemma, it is even enough to check only the equations corre-
sponding to one set of generators, {ri}, per ideal.

Corollary 9. If R is Noetherian, an R-module M is algebraically closed if and only if each
finite consistent single-variable set of equations has a solution in M .

Proof. In the proof above, the set of generators {rj} of I can always be chosen to be finite. �

Example 10. Let R = C[ε]/ε2, M = R. Let us show that M is injective.
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R has only three ideals, 0, (ε), and R. The equations associated to 0 and R are trivial to
solve, so we’re left with figuring out what the consistent equations of the form εx = m are,
then checking that they have solutions.

First, note that εx = m =⇒ εm = ε2x = 0. So, in order for εx = m to be consistent, m
must be in the annihilator of ε. That is, m ∈ (ε). Therefore the equations we have to solve
are those of the form εx = εa, where a ∈ C. These have the obvious solution x = a, and we
are done.

Example 11. Let R = C[a](a), M = R/a = C. Let’s compute the “smallest” injective
module containing M .

Since R is a DVR, the only ideals of R are the trivial ideals and the ideals (an). This
means we need to figure out what the consistent equations of the form anx = m are, then
introduce solutions to them.

On the former point, a single equation rx = m is only inconsistent if there is some s ∈ R
so that sr = 0, but sm 6= 0. Our R is a domain, so this does not happen.

For m = 0, anx = m has the trivial solution x = 0. On the other hand, anx = 0 for
any x ∈ M , so anx = m does not have a solution in M when m is nonzero. We’ll have to
introduce solutions.

Let E = C(a)/aC[a](a). M includes into E in a natural way, and there are solutions to the
equations anx = m for any m ∈ E. Moreover, no proper submodule has these properties.
Therefore E is a “smallest” injective module containing M .

We get another pleasant proof of a basic result on injective modules.

Corollary 12. If R is a Noetherian ring, direct sums of injective modules are injective.

Proof. Let {Mi}i∈I be a set of injective R modules. To verify that M =
⊕

i∈I Mi is injective,
it is enough by the previous corollary to check that any finite, consistent single-variable set
of equations in M admits a solution.

So let {rjx = mj}j∈J be a consistent set of equations where J is a finite indexing set.
Only finitely many coordinates of the rj and mj are nonzero, so the whole set of equations is
nonzero in only finitely many coordinates. We can use that the Mi are algebraically closed
to find solutions in those coordinates, then combine these solutions to get a solution in M ,
that is, one with only finitely many nonzero coordinates. �


