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Degeneration of Prym Varieties: A computational approach to the indeterminacy locus of the Prym

map and degenerations of cubic threefolds

Thesis directed by Prof. Sebastian Casalaina–Martin

In this paper we will explore the extension of the Prym period map from the moduli space of

admissible double covers of stable curves to the perfect cone compactification of the moduli space of

principally polarized abelian varieties. We will use the insight from Casalaina-Martin, Grushevsky,

Hulek, Laza, and Dutour Sikirić to understand the indeterminacy locus of this extension of the Prym

map. Using computational methods we characterize the indeterminacy locus up to codimension 10

in the case where the base curves have genus 5. The last section will be devoted to an application

of the Prym period map in which we construct the necessary extension data needed to classify the

intermediate Jacobian of a cubic threefold with 2A1 singularity type.
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Chapter 1

Introduction

In this thesis we consider the period map for Prym varieties. For motivation, the Torelli

map Mg → Ag is a morphism from the moduli space of smooth curves of genus g ≥ 2 to the

moduli space of principally polarized abelian varieties of dimension g. This map is defined by

assigning to a smooth curve of genus g its Jacobian Pic0X. A long standing question in algebraic

geometry is whether the map extends to compactifications of the moduli spaces. The canonical

choice of compactification for Mg is the Deligne-Mumford compactification. In this thesis we will be

concerned with three standard toroidal compactifications of the moduli space principally polarized

abelian varieties: the second Voronoi, perfect cone, and central cone compactifications.

In [Nam76], Namikawa credits Mumford with proving that the Torelli map extends to a

morphism Mg → Ag from the Deligne-Mumford compactification of Mg to the Second Voronoi

compactification of Ag. In [AB12], Alexeev and Brunyate show that the extended Torelli map is

regular in the case of the perfect cone compactification for all g and regular in the case of the

central cone compactification for g ≤ 6 but not regular for g ≥ 9.

After the Torelli map, a natural next case to consider is the Prym map. One can associate

a principally polarized abelian variety to a connected étale double covers of curves, called a Prym

variety. This association gives the Prym period map

Pg : Rg → Ag−1

where Rg is the moduli space of connected étale double covers of curves of genus g. Prym varieties

provide a geometric approach to understanding higher dimensional principally polarized abelian
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varieties as the Prym map is dominant for g − 1 ≤ 5 (whereas the Torelli map is dominant for

g ≤ 3).

A normal crossings compactification of Rg was constructed by Beauville using admissible

double covers of stable curves. Similar to the Torelli map, the question is whether the Prym

period map extends to a regular map in the case of each Toroidal compactification of Ag−1. In

summary of [FS86], the Prym map does not extend to a regular map in any of the standard toroidal

compactifications of Ag−1.

In Alexeev–Birkenhake–Hulek [ABH02] and Vologodsky [Vol02], they described the indeter-

minacy locus in the case of the second Voronoi compactification, Rg+1 99K A
V
g . More precisely, in

[FS86], Friedman and Smith found some explicit examples of admissible double covers where the

Prym map does not extend to a regular map. In [ABH02] the indeterminacy locus of Rg+1 99K A
V
g

is identified as the closure of the locus that Friedman-Smith identified.

In this thesis we study the indeterminacy locus of the Prym map in the case of the perfect

cone compactification. We study the Friedman-Smith degenerations where the Prym map does not

extend to a morphism. A result of [FS86] was a partial classification of the indeterminacy locus

which follows,

FS2 ∪ FS3 ⊆ Ind(PPg ).

The set FSn denotes the set of Friedman-Smith degenerations with n nodes (see section 5.6). In

[CMGHL17b, Thm. 7.1] the authors gave a further classification of the indeterminacy locus

FS2 ∪ FS3 ⊆ Ind(PPg ) ⊆ FS2 ∪ FS3 ∪ δFS4 ∪ · · · ∪ δFSg

where δFSn = FSn − FSn. The main question we address in this thesis is whether or not the

indeterminacy locus of the Prym period map for the perfect cone compactification is actually equal

to FS2 ∪FS3 [CMGHL17b, Que. 7.4]. For g < 5 this is true [CMGHL17b, Rem. 7.2]. In g ≥ 5 the

answer to this question is unknown, but has been established in the affirmative up to codimension

6 [CMGHL17b, Thm. 7.1]. The main result of the thesis regarding this question the following:

Theorem 1.0.1. The indeterminacy locus of the Prym map P5 : R5 99K A
P
4 , from the moduli of
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admissible double covers of genus 5 curves to the perfect cone compactification of the moduli of

principally polarized abelian varieties of dimension 4, is, up to codimension 10, equal to the locus

of degenerations of Friedman-Smith covers with 2 or 3 nodes in the base curve; i.e., FS2 ∪ FS3.

The technique is computational, and in short, our goal was to write a computer program

that could identify the indeterminacy locus. The strategy is as follows. In [CMGHL17b], the

authors used Hodge theory to approach the problem of extending the Prym map. This technique

allows us to determine the conditions for extending the map through the use of monodromy cones

([CMGHL17b][§4]). Calculating monodromy cones reduces the geometric aspects of the problem

to purely combinatorial methods. In other words, we are able to determine whether or not an

admissible cover lies in the indeterminacy locus entirely based on properties of its dual graph. The

computer program implements this, and computes the monodromy cone for any given admissible

cover. A program due to Mathieu Dutour Sikirić determines whether the monodromy cone lies in

the perfect cone decomposition; this program was devoloped using similar techniques as [DSHS15]

and [DSSV08]. Thus the question is reduced to enumerating all the dual graphs of admissible double

covers of a given genus, and then implementing these programs. At this point, the main obstruction

to obtaining a complete result in a given genus g ≥ 5 is that there are too many admissible covers.

We are able to reduce the number of admissible covers we need to consider in a few ways, but not

enough to completely answer the question. Since we are only interested in the dual graph, and the

dimension of a stratum in Rg corresponding to covers of curves with dual graphs of a given type

has codimension equal to the number of edges in the dual graph of the base curve, we choose to

focus on enumerating the covers by the edges in the base curve. This also gives some partial results

for larger g (see Theorem 12.2.2).



Chapter 2

Overview

Given a dual graph Γ̃ of an admissible étale double cover of a curve C̃/C we first find H1(Γ̃,Z)

(section 3.3). The cover implicitly comes with an admissible involution ι and from this involution we

can calculate the eigenspaces of the action of ι on H1(Γ̃,Z). We denote these eigenspaces H1(Γ̃,Z)±

respectively which follows the notation of [CMGHL17b]. From these eigenspaces we can calculate

specific quotients of H1(Γ̃,Z); mainly

H1(Γ̃,Z)[−] = H1(Γ̃,Z)/H1(Γ̃,Z)+.

This quotient will be represented as a matrix whose rows correspond to linear forms, which upon

squaring give quadratic forms that define the extremal rays of the monodromy cone (section 5.7).

In terms of implementing this we begin by enumerating all possible dual graphs of a base

curve C. This means generating all graphs of fixed number of edges, vertices, and loops up to

isomorphism (section 7). For each possible dual graph we enumerate all possible dual graphs of

admissible étale double covers C̃/C up to isomorphism over the base dual graph (section 8). This

involves checking potential double covers for admissibility (section 5). Next we select only the étale

double covers which are Friedman-Smith degenerations of order 4 or higher (section 8.5). Finally,

for each Friedman-smith degeneration dual graph of C̃/C with order greater than or equal to 4,

we calculate the monodromy cone (section 6.3). Mathieu Dutour Sikirić inputs these monodromy

cones into his program which determines whether or not each C̃/C ∈ FSn, for n ≥ 4, lies in the

indeterminacy locus of the extension of the Prym period map in the perfect cone case.
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The main difficulty in obtaining results in higher genus is twofold. As we increase the genus

of the curve, the dimensions of the base graph grow linearly with respect to the genus (see section

10). This is problematic because the number of dual graphs of double covers over the base graph

will grow exponentially with respect to the number of edges and vertices. When considering graphs

with 10 edges we already have too many possible admissible covers to feasibly handle. One possible

solution to this problem would be a way of finding reductions in the sample size of base graphs we

are considering or further reducing the admissible covers for each base graph.

The second obstacle to handling higher genus curves is the isomorphism testing of each

dual graph. We require the isomorphism testing of all graphs in order to limit the number of

monodromy cone computations we perform and to significantly reduce the size of our output files.

Without isomorphism testing larger dimensional cases would result in output files too large to be

stored on a common laptop. There is a quasi-polynomial time algorithm to perform isomorphism

tests (see [Bab15]) but the runtime expense of isomorphism testing becomes much worse in higher

dimensions and is not feasible with the quantity of graphs we consider in such dimensions. The

best isomorphism testing programs – Nauty, Bliss, or Trace – typically work very well but their

worst runtime scenarios are exponential. The only solution to this beyond reducing the number of

tests one needs to make would be to find a way of constructing unique members of isomorphism

classes.

It is worth mentioning that a successful attempt was made to write this program in Java.

Java could provide faster compilation times than Python but one major obstacle prevented us from

getting comparatively high dimensional results like we obtained through Python – we only reached

a complete calculation of 7 edges in Java vs 9 edges in Python. There are currently no good

implementations of optimal graph isomorphism testing algorithms in Java. We were able to write

our own algorithm in Java but it did not compare to the runtimes of the cutting edge techniques

of isomorphism test implementations such as Nauty which is easily available through the SAGE

library in Python. Python, via SAGE, also provides a lot of useful tools for handling graphs that

allows us to outsource some of the tedious aspects of our code to a well tested library.
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We do find partial results in higher dimensions – 10 and 11 edge base graphs – which will

provide more intuition on making a conjecture for the full genus 5 case. We completely find

the monodromy cones for all 9 edge base graphs and below. This will give us the result up to

codimension 10.

We begin this thesis by discussing graph fundamentals in section 3. This section will include

the definition of a graph, the incidence matrix of a graph, and other basic notations. In section 4

we go over the implementation of graphs in our program. This will be done by a Python class

called EGraph . In section 5 we give the mathematics of an admissible cover of a dual graph.

This section includes all the essential machinery to computing the monodromy cone along with

examples. In section 6 we discuss the implementation of defining admissible cover graphs in our

program. These objects will be stored in a class called CoverGraph which will resemble the

EGraph class. Section 7 will be a step by step overview of the process of generating all base graphs

of a specific dimension. There will be two methods of generating base graphs. The first will be a

suboptimal approach used to generate all graphs of 3 edges. Then we will optimize our enumeration

by recursively generating all graphs of higher dimension. In section 8 we enumerate all admissible

cover graphs of a specific base graph. This complicated body of programming is carefully dissected

to give the reader a thorough understanding of how to generate all possible covers of a base graph,

test which covers are admissible, and finally test cover graph isomorphisms. In section 9 we carefully

go over an example of calculating a monodromy cone of basic low dimensional dual graph and an

étale double cover. Section 10 is an explanation of how we associate dimensions to a dual graph

of a curve of fixed dimensions. This important section will help compute the necessary dimensions

to completely answer the indeterminacy locus question over curves of a fixed genus. In section 11

we discuss a possible future direction for the project in which we only enumerate Friedman-Smith

covers. In section 12 we give the conclusion of our calculations and explain some of the limiting

factors. Finally, in section 13 we discuss an application of the Prym period map which we use to

calculate the intermediate Jacobians of cubic threefolds with singularity type 2A1.



Chapter 3

Notation for graphs

3.1 Definition of a graph

Following Serre’s notation in [Ser03, § 2.1], a graph Γ will consist of the data

(
→
E

s //
t
// V,

→
E

τ→
→
E),

where V and
→
E are sets, τ is a fixed-point free involution, and s and t are maps satisfying s(

→
e ) =

t(τ(
→
e )) for all

→
e ∈

→
E. The maps s and t are called the source and target maps respectively. We

call V =: V (Γ) the set of vertices. We call
→
E =:

→
E(Γ) the set of oriented edges. We define

the set of (unoriented) edges to be E(Γ) = E :=
→
E/τ . An orientation of an edge e ∈ E is

a representative for e in
→
E; we use the notation

→
e and

←
e for the two possible orientations of e.

An orientation of a graph Γ is a section φ : E →
→
E of the quotient map. An oriented graph

consists of a pair (Γ, φ) where Γ is a graph and φ is an orientation. Given an oriented graph, we

say that φ(e) is the positive orientation of the edge e. Given a subset S ⊆ E, we define
→
S ⊆

→
E

to be the set of all orientations of the edges in S. A graph Γ is said to be finite if
→
E and V are

finite sets. Give an unoriented edge e ∈ E(Γ), we define the set of endpoints of the edge e to be

{s(~e), t(~e)} where [~e] = e, and each element of that set is called an endpoint of e.

v0 v1
e

v0 v1

→
e

←
e

v0 v1

→
e = φ(e)

Figure 3.1: Converting unoriented graph into an oriented graph
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The left and center figures give two depictions of the same graph Γ, one showing the unori-

ented edges E(Γ) (left), and the other showing the oriented edges
→
E(Γ) (center). The figure on the

right depicts an oriented graph (Γ, φ), obtained by a choice of orientation of the graph Γ.

3.2 Morphism of graphs

Given two graphs Γ1 and Γ2 a graph morphism f : Γ1 → Γ2 is the data of two maps,

f→
E

:
→
E(Γ1)→

→
E(Γ2) between the set of oriented edges and fV : V (Γ1)→ V (Γ2) between the set of

vertices, such that the following two diagrams commute:

→
E(Γ1)

f→
E //

s

��

→
E(Γ2)

s

��

→
E(Γ1)

f→
E //

t

��

→
E(Γ2)

t

��
V (Γ1)

fV
// V (Γ2) V (Γ1)

fV
// V (Γ2).

To a morphism of graphs, one obtains an morphism on unoriented edges fE : E(Γ1) → E′(Γ2) by

fE([~e]) = [f→
E

(~e)].

A morphism of oriented graphs f : (Γ1, φ1)→ (Γ2, φ2) is a morphism of graphs such that

f→
E
◦ φ1 = φ2 ◦ fE .

Example 3.2.1. Let Γ be the graph depicted in Figure 3.1. There is a morphism of graphs

f : Γ → Γ given by fV (v0) = v1, fV (v1) = v0, f→
E

(
→
e ) =

←
e , and f→

E
(
←
e ) =

→
e . Note that at the

level of unoriented edges, this fixes the edge e. This assignment does not define a morphism of

oriented graphs (Γ, φ)→ (Γ, φ). The only morphism of graphs f : Γ→ Γ that induces a morphism

of oriented graphs is the identity map.

3.3 Homology of a graph

Given a ring R, let C0(Γ, R) =
→
C0(Γ, R) be the free R-module with basis V (Γ) and

→
C1(Γ, R)

be the R-module generated by
→
E(Γ) with the relations

←
e = −→e for every e ∈ E(Γ). If we fix

an orientation, then a basis for
→
C1(Γ, R) is given by the positively oriented edges; this induces an

isomorphism with the usual group of 1-chains on the simplicial complex associated to Γ. These
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modules may be put into a chain complex. Define a boundary map ∂ by

∂ :
→
C1(Γ, R) −→

→
C0(Γ, R) = C0(Γ, R)

→
e 7→ t(

→
e )− s(→e ).

We will denote by H•(Γ, R) the groups obtained from the homology of
→
C•(Γ, R). The homology

groups H•(Γ, R) coincide with the homology groups of the topological space associated to Γ.

Remark 3.3.1. Let f : Γ1 → Γ2 be a morphism of graphs and let σ : 4n → Γ1 be an n complex

in Γ1, for graphs n = 0 or n = 1. We define f# : Cn(Γ1)→ Cn(Γ2) as follows,

f#

(∑
i

ηiσi

)
=
∑
i

ηif ◦ σi.

This will be a chain map; that is, ∂f# = f#∂ and the following diagram commutes.

0 // C0(Γ1)
∂ //

f#

��

C1(Γ1)

f#

��

// 0

0 // C0(Γ2)
∂
// C2(Γ2) // 0

Therefore f# takes n-cycles to n-cycles and n-boundaries to n-boundaries. Furthermore, f# induces

maps Hn(f) : Hn(Γ1)→ Hn(Γ2).

3.4 Incidence matrix of an oriented graph

Given a finite oriented graph (Γ, φ), and vertex and edge sets V = {v1, . . . , vn} and E =

{e1, . . . , em}, one obtains the associated n×m incidence matrix A, with entries aij as follows,

aij =



−1 s(φ(ej)) = vi and ej not a loop,

1 t(φ(ej)) = vi and ej not a loop,

0 else.

In other words, one labels the rows of the matrix A by the vertices of the graph, and the columns by

the oriented edges of the graph, and then for edges that are not loops, one enters −1, 1, 0 depending
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on whether an edge starts, ends, or does not contain a given vertex, respectively. For loops, we leave

the column corresponding to the loop edge identically zero. This will be important for calculating

homology. In implementing the graphs we will need to store information on which vertex each loop

belongs to but this will be discussed later.

Example 3.4.1. Consider the following graph with 3 vertices and 3 edges with one edge being a

loop.

v0 v1

v2

e1

e2

e0

Figure 3.2: Basic Graph with Loop

This base graph has the following incidence matrix. Notice that the zero-column (first column but

indexed at 0) has all zero entries. This indicates that e0 is a loop.

A =

e0 e1 e2



v0 0 −1 −1

v1 0 1 0

v2 0 0 1

An abstract incidence matrix is defined to be a matrix with all entries 0, 1,−1, and such that

in each column, the entries are either all 0, or exactly two entries are nonzero, with one equal to 1

and the other equal to −1.

IM : {finite oriented graphs with enumerated vertices and edges} −→ {incidence matrices}
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For brevity, we will call these finite oriented enumerated graphs.

Remark 3.4.2. Note that a graph gives rise to an incidence matrix, but the incidence matrix

forgets the data of the loops. For computing cohomology, this is actually useful for us. If we want

to go the other direction, from incidence matrices to oriented graphs, we need the extra information

which indicates where loops are located (see 7.1).

3.5 Connectedness

We will make use of the map

IC : {graphs} −→ Z2

that is 1 if the graph is connected, and 0 otherwise. We have IC(Γ) = 0 unless rankH0(X,Z) = 1.

3.6 Loops in graphs

Given a graph Γ, consider the map

E(Γ)→ Z2

that is 1 if an edge is a loop, and 0 otherwise. For instance, given the incidence matrix A of a finite

graph, e 7→ 1 if and only if the corresponding column is a zero column. This identification will be

useful when constructing admissible covering graphs. We will have to handle the covering of loops

in a very specific way (see section 5.4).

3.7 Integral bases of homology

We will be interested in maps

H1B : {finite oriented enumerated graphs} −→ {free Z-modules of finite rank with a basis}

sending a graph to H1(Γ,Z) together with an integral basis. We will construct a particular map

later.



Chapter 4

Implementing graphs: The EGraph class

We choose to write to program in Python primarily because of SageMath. SageMath is a

mathematical software that builds upon many open sourced Python math packages. In our case

we were primarily interested in the Sage packages dealing with Graphs. Sage has a graph class

that has many useful methods. The one with the most upside for us was its Nauty based graph

isomorphism testing [MP13]. We will be generating a lot of graphs and will only be interested in

isomorphism classes of graphs.

Building off of the graph class in Sage we need to develop an extended graph class, EGraph.

One of the reasons we need to extend the graph class is because we need to be able to impose a

direction on our graph in order to calculate Homology (see 3.7). Another reason we need to extend

the graph class in Sage is because we need a convenient way to store information about loops. The

incidence matrix function in the sage graph class returns a matrix with columns containing exactly

one -1 and one 1. This is acceptable for graphs with no loops but when calculating the homology

of the graph it is crucial that we have zero columns corresponding to loops.

The EGraph class consist of two primary initial objects

• A DiGraph G (directed graph object from Sage)

• a 2-dimensional array of integers called IM representing the incidence matrix which was

discussed in section 3.4.

To construct an instance of EGraph you would call the constructor which has three inputs:
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The DiGraph G, the incidence matrix IM, and a dictionary called Configs. The dictionary stores the

information on number of loops, edges and vertices in the graph. Upon initialization we calculate

the homology of the base graph. This is done by taking a basis of the right kernel of the incidence

matrix using methods from the Sage matrix classes.

self.Homology Basis = Matrix(self.IM).right kernel().basis()

To further explain the graph class we will consider the following example from above.

v0 v1

v2

e1

e2

e0

Figure 4.1: Basic Graph with Loop

This basic graph will have incidence matrix (§3.4) as follows,

Incidence Matrix =

e0 e1 e2



v0 0 −1 −1

v1 0 1 0

v2 0 0 1

Throughout each iterative run of the program we will be fixing the values for loops, edges, and ver-

tices. This information will be collected through command line arguments at the time of compiling

and then stored into a dictionary named congfigs. In the above example we have three vertices,

three edges, and one of the edges is a loop. Therefore the command to run the program would look

like
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sage -python GetBaseGraphs.py 3 3 1

and configs would look like,

configs = {‘‘verts’’ : 3, ‘‘edges’’ : 3, ‘‘loops’’ :1}

The reason for the sage portion of the run command is that we must run the Python program in

a SAGE shell.

Remark 4.0.1. The reason for fixing the number of edges, vertices, and loops is not transparent at

the moment. I will mention that for the purpose reducing the sample space of graph isomorphism

checking it will be useful to restrict our attention to graphs of fixed dimensions.

Before we can create an object of EGraph we need to know how to create an object of the

graph class in Sage. To do this we need to tell the compiler how many vertices we are working

with, that we are allowing loops in the base graph, and that multiedges (multiple edges between

two vertices) are allowed.

G = DiGraph(configs["verts"],loops=true, multiedges=true)

The above will initialize an instance of the Sage DiGraph class. Then we are free to add edges to

the respective instance. Referring to the above example we need to add three edges: one edge is a

loop on vertex 0, another edge is between vertex 0 and vertex 1, the final edge is between vertex 0

and vertex 2. In Python this would look like,

G.add edge(0,0,0)

G.add edge(0,1,1)

G.add edge(0,2,2)

You can see that the first entry of the DiGraph class function add edge is the starting vertex,

the second entry is the terminal vertex, and the final entry is the label. In our case we will use the

label to enumerate the edges of the graph.

To initialize an instance of the EGraph class with the above incidence matrix and loop

information, we will call the EGraph class constructor as follows,
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E = EGraph(G,IM,configs)

this will create a new instance of the EGraph class called E and implicitly calculate a first homology

basis, Homology Basis. To access the first homology basis we would make a reference to the

Homology Basis object of the EGraph class instance. In the above example we would have,

E.Homology Basis = [(1,0,0)].

Observe that Homology Basis is a list of tuples in Python. In the example we have one basis vector

corresponding to the loop at vertex 0.



Chapter 5

Admissible covers of graphs

In this section we introduce the notions of admissible involutions of graphs, and admissible

(double) covers of graphs. This is the graph theoretic analogue of admissible involutions and

admissible double covers of stable curves.

5.1 Admissible involutions of graphs

Definition 5.1.1 (Admissible involution). Let Γ̃ be a finite graph; then an admissible involution

of Γ̃ is a graph morphism ι : Γ̃→ Γ̃ (see section 3.2) such that ι2 = Id with the stipulation that if

ιE fixes an unoriented edge ẽ ∈ E(Γ̃) then the endpoints of ẽ must be fixed by ιV . An admissible

involution of an oriented, finite graph (Γ̃, φ) is a oriented graph morphism ι : (Γ̃, φ̃)→ (Γ̃, φ̃)

such that the induced morphism of graphs is an admissible involution.

See §5.3 for some examples.

Remark 5.1.2. An admissible involution of a stable curve gives rise to an admissible involution of

the dual graph of the curve. Conversely, given an admissible involution of a connected finite graph,

there exists an admissible involution of a stable curve whose dual graph is the original graph, and

such that the induced involution of the dual graph is the initial admissible involution [CMGHL17b].

While dual graphs of curves do not come equipped with an orientation, it is frequently

convenient to choose an orientation. We now translate the definition of admissible involution of a

graph into the language of oriented graphs.
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Lemma 5.1.3. Let (Γ̃, φ̃) be a finite oriented graph. If ι : (Γ̃, φ̃)→ (Γ̃, φ̃) is an oriented involution

(a morphism of oriented graphs that is an involution), then the induced morphism of graphs ι : Γ̃→

Γ̃ is an admissible involution; i.e., ι is an admissible involution of the oriented graph (Γ̃, φ̃).

Conversely, given an admissible involution of graphs ι : Γ̃ → Γ̃, there is an orientation φ̃ of

Γ̃ such that ι induces an admissible involution of the oriented graph (Γ̃, φ̃).

Proof. Let (Γ̃, φ̃) be a finite oriented graph, and ι : (Γ̃, φ̃) → (Γ̃, φ̃) be an oriented involution (a

morphism of oriented graphs that is an involution). To check that ι induces an admissible involution

of the graph Γ̃, we must check that if ιE fixes an unoriented edge ẽ ∈ E(Γ̃) then the endpoints of

ẽ must be fixed by ιV . Let ẽ ∈ E(Γ̃) be such that ιE(ẽ) = ẽ. Then we have:

ιV (s(φ̃(ẽ))) = s(ι→
E

(φ̃(ẽ))) = s(φ̃(ẽ));

the first equality is from the definition of a morphism of graphs, and the second is from the

definition of a morphism of oriented graphs. Similarly, ιV (t(φ̃(ẽ))) = t(φ̃(ẽ)). Therefore, ι defines

an admissible involution of the graph Γ̃.

Conversely, suppose we are given a graph Γ̃ and an admissible involution ι : Γ̃→ Γ̃. We can

construct an orientation on Γ̃ preserved by ι in the following way. Roughly speaking, we take the

quotient graph Γ of Γ̃ determined by the involution, choose an arbitrary orientation of Γ, and then

lift that orientation back up to Γ̃.

In more detail: we may construct a new graph Γ = Γ̃/ι as follows: We set V (Γ) = V (Γ̃)/ιV

and
→
E(Γ) =

→
E(Γ̃)/ι→

E
. We define the source and target maps similarly. Pick an arbitrary orientation

φ on Γ. We will essentially pull back the orientation φ along the quotient map πE : E(Γ̃)→ E(Γ)

to get an orientation φ̃ on Γ̃. To explain this, let [ẽ] ∈ E(Γ̃) then there exist an [e] ∈ E(Γ) such

that πE([ẽ]) = [e], by the surjectivity of πE . If [ẽ] has endpoints ũ, ṽ ∈ V (Γ̃) then ũ ∈ π−1
V (s(φ(e)))

or ũ ∈ π−1
V (t(φ(e))). If ũ ∈ π−1

V (s(φ(e))) then let ũ = s(φ̃(ẽ)) or if ũ ∈ π−1
V (t(φ(e))) let ũ = t(φ̃(ẽ)).

Do the same for ṽ. This will assign a direction to [ẽ] and hence an orientation φ̃ on Γ̃.

Next we claim that ι preserves the orientation φ̃ of Γ̃. Let ẽ ∈ E(Γ̃) then π(ιE(ẽ)) = π(ẽ).

Therefore by the explicit construction of the orientation of Γ̃ we have π(s(ι→
E

(φ̃(ẽ)))) = π(s(φ̃(ẽ)))
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and therefore ιV (s(φ̃(ẽ))) = s(ιE(φ̃(ẽ))). By similar reasoning, ιV (t(φ̃(ẽ))) = t(ιE(φ̃(ẽ))). From

section 3.2 we know that ι : Γ̃→ Γ̃ is a graph morphism that preserves the orientation of Γ̃.

Remark 5.1.4. In light of Lemma 5.1.3, from now on, when discussing admissible involutions of

graphs, we we always assume we have an oriented graph, in which case the admissible involution is

equivalent to an involution of the oriented graph.

Remark 5.1.5. In the proof of lemma 5.1.3 we are allowed to choose an arbitrary orientation of the

base graph Γ which will then make the inherited orientation of Γ̃ lead to an orientation preserving

involution ι. This will be extremely useful in programming the implementation of the cover graph.

Namely, once we enumerate the vertices of the base graph Γ, this will induce an enumeration of

the edges of Γ, as well as an orientation of Γ. We can then use this, as indicated above, to give a

specific orientation of the cover graph.

Remark 5.1.6. We will now frequently drop the notation ~e for an oriented edge. For the rest of

the thesis we will be working with oriented graphs and thus the context will be clear. This will

also be convenient later, when we introduce cover graphs, so that we can adopt the notation ẽ to

signify that an edge belongs to the cover graph Γ̃ as opposed to edges e in the base graph Γ.

5.2 Admissible double covers of graphs

Definition 5.2.1. An admissible (oriented) covering graph of degree 2 of Γ (or just a

covering graph of Γ, for short) is a triple ((Γ̃, ι),Γ) where,

• Γ̃ is a finite (oriented) graph.

• ι is and admissible involution of (oriented) Γ̃.

• Γ is a (oriented) graph such that V (Γ) = V (Γ̃)/ιV ,
→
E(Γ) =

→
E(Γ̃)/ιE ,

• The natural quotient map on vertices and edges induces a (oriented) graph morphism

π : Γ̃→ Γ.
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We call Γ̃ the cover graph and Γ the base graph.

Remark 5.2.2. An admissible cover of curves π : C̃ → C induces an admissible cover of dual

graphs. Conversely, given an admissible cover of dual graphs, there exists an admissible cover of

curves whose dual graphs are the original graphs. [CMGHL17b]

We introduce some notation that will be convenient later. Given an admissible cover graph,

v ∈ V (Γ) and e ∈ E(Γ), we use the notation

π−1(v) =


{ṽ+, ṽ−},

{ṽ}
π−1(e) =


{ẽ+, ẽ−} ,

{ẽ}

to indicate the various possibly vertices and edges in the cover graph lying over the vertices and

edges in the base graph. The ± notation indicates that vertices or edges are interchanged under

the involution; i.e., ṽ+ = ι(ṽ−).

5.3 Example of admissible involutions and covering graphs

First we will consider a very basic example of a graph.

ṽ+
0 ṽ−1

ẽ0

Figure 5.1: Non admissible involution

In this graph we have two vertices and one edge. The involution suggested by the notation, i.e.,

ι(ṽ+
0 ) = ṽ−0 , and ι(ẽ0) = ẽ0, fails to be admissible since the edge is fixed, but the endpoints are

interchanged. Notice that there is no choice of orientation of the edge so that the involution becomes

an orientation preserving graph morphism.

ṽ+
0 ṽ−1

ẽ0

Figure 5.2: Non admissible involution (oriented)
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If we consider the following base graph Γ,

v0 v1

v2

e0

e1
e2

Figure 5.3: Base Graph Γ

Then the following is a dual graph of an admissible cover.

ṽ0 ṽ−1

ṽ2

ṽ+
1

ẽ−0

ẽ−1

ẽ2

ẽ+0

ẽ+1

Figure 5.4: Admissible cover of Γ

The next dual graph is not admissible because ι is not an orientation preserving graph

morphism of Γ̃, notice

ṽ−1 = s(ιE(ẽ1)) 6= ιV (s(ẽ1)) = ṽ+
1 .
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ṽ0 ṽ−1

ṽ2

ṽ+
1

ẽ−0

ẽ1
ẽ2

ẽ+0

Figure 5.5: Not an admissible cover of Γ

5.4 Admissible covers of loops

In this section we will go through specific ways to admissibly cover a loop in the base graph.

First, if the vertex is not fixed by the involution ιV in the covering graph then the loop must also

not be fixed by the involution ιE in the covering graph. In this scenario there are two ways to cover

a loop. Suppose we are given the following base graph.

v0e0

Figure 5.6: Base Graph Loop

The first way to cover the loop is to have a corresponding loop on the covered vertex as follows,

ṽ−0

ṽ+
0

ẽ−0

ẽ+0

Figure 5.7: First Loop Cover Option
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(Notice that this graph is not connected and would require more nodes and edges to be an admissible

cover.) The second way to cover a loop is to have the loop become an edge that connects the two

elements in the preimage of v1. Then have the second edge be the same with the reverse orientation.

ṽ−0

ṽ+
0

ẽ−0 ẽ+0

Figure 5.8: Second Loop Cover Option

Now suppose that the vertex of the graph is fixed by ιV in the covering map. If the loop is not

covered then we have the following situation.

ṽ0ẽ0

Figure 5.9: Covering a ramified loop for ramified vertex

If the loop e0 is covered then we will have two loop on the admissible cover, ẽ−0 and ẽ+
0 , both starting

and ending at the vertex ṽ0. The connection with moduli is reviewed in [CMGHL17b, §3.4]

ṽ0ẽ−0 ẽ+0

Figure 5.10: Covering a loop for ramified vertex

Remark 5.4.1. In the next section we will show how to reduce all admissible double covering dual

graphs which contain loops to calculations on graphs of smaller dimensions. This indicates that

we can assume that in the admissible covers the loop edges are covered and their corresponding

vertices are covered. Also, in this case we only have to consider loop covering option number 2.
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5.5 Reduction of loops in the cover graph

It has been mentioned before that there are too many possible covering graphs to check all

examples therefore it would be helpful to make some reductions on the space of all cover graphs.

The only reduction that we will be able to make is ability to reduce cover graphs containing a loop

to lower dimensional computations following the methods from [CMGHL17b, Appen. D].

Propostion 5.5.1. Let Γ̃ be an admissible cover of a base graph Γ and suppose that Γ̃ contains a

loop. We can reduce Γ̃ to lower dimensional computations.

Proof. Let Γ̃ be an admissible cover of a base graph Γ that contains a loop. If e0 ∈ E(Γ) is the loop

in the base graph connected at the vertex v0 – we can re-index to make this true – there are two

cases to consider. First suppose that e0 is fixed by the involution ιE . Then ẽ0 ∈ E(Γ̃) is the edge

above e0 in the cover graph. We can choose a basis for H1(Γ̃,Z) such that it contains the basis

vector (1, 0, . . . , 0) corresponding to the loop ẽ0 and so that ẽ0 is not a part of any other generating

cycle in the basis. If we apply the map 1
2(id − ι) to H1(Γ̃,Z) we still have the vector (1, 0, · · · , 0)

in the basis of H1(Γ̃,Z)[−]. Next suppose that e0 is not fixed by the involution ιE then we can

choose a basis for H1(Γ̃,Z) such that it contains the two vectors (1, 0, . . . , 0) and (0, 1, 0, . . . , 0)

corresponding to ẽ−0 and ẽ+
0 respectively and no other generating cycle of H1(Γ̃,Z) will contain the

two edges ẽ−0 and ẽ+
0 . Now when we apply the map we will get the two vectors (1,−1, 0, . . . , 0)

and (−1, 1, 0, . . . , 0) which are linearly dependent and thus will correspond to one basis vector in

H1(Γ̃,Z)[−].

Let Γ1 ⊂ Γ be the subgraph of containing the vertex v0 and the loop e0. Define Γ̃1 ⊂ Γ̃ to

be the cover graph of Γ1 which contains vertices π−1(v0) and the edges π−1(e0) where π : Γ̃ → Γ.

Let Γ2 ⊂ Γ be the subgraph equal to Γ minus the loops π−1(e0). That is V (Γ2) = V (Γ) and

E(Γ2) = E(Γ) − {e0}. Define Γ̃2 ⊂ Γ̃ to be the covering subgraph associated to Γ2. Notice that

ιΓ̃i = Γ̃i for i = 1, 2. We can decompose the monodromy cone as follows,
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MC(Γ̃) =

 MC(Γ̃1) 0

0 MC(Γ̃2)


Therefore we can reduce the question of whether MC(Γ̃) is in an admissible cone decomposition to

a question of whether the lower dimensional monodromy cones MC(Γ̃1) and MC(Γ̃2) are contained

in cones.

5.6 Friedman-Smith Covers

We now discuss a class of examples of admissible double covers that Friedman and Smith

used to show that the Prym map does not extend in [FS86].

Definition 5.6.1. A Friedman-Smith cover with 2n ≥ 2 nodes is an admissible cover π : C̃ → C

such that

(i) C̃ = C̃1 ∪ C̃2 with C̃1 and C̃2 smooth and irreducible, and

C̃1 ∩ C2 =
{
p̃−1 , p̃

+
1 , . . . , p̃

−
n , p̃

+
n

}
.

(ii) ιC̃i = ιCi for i = 1, 2.

(iii) ιp̃±i = p̃∓i for i = 1, . . . , n.

A cover π : C̃ → C is a degeneration of a Friedman-Smith cover if it can be obtained

by further degenerations of a Friedman-Smith cover. In the language of dual graphs we have the

following definition.

Definition 5.6.2. A graph Γ̃ is a Friedman-Smith graph with 2n ≥ 2 edges with admissible

involution ι if:

(i) Γ̃ has two vertices {ṽ1, ṽ2}

(ii) Γ̃ has 2n edges
{
ẽ−1 , ẽ

+
1 , . . . , ẽ

−
n , ẽ

+
n

}
with s(ẽ±i ) = ṽ1 and t(ẽ±i ) = ṽ2 for i = 1, . . . , n.
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(iii) ιṽi = ṽi for i = 1, 2

(iv) ιẽ±i = ẽ∓i for i = 1, . . . , n.

ṽ1 ṽ2

ẽ−0

ẽ+0

ẽ−1

ẽ+1

Figure 5.11: Friedman-Smith graph of order 2

A degeneration of a Friedman-Smith graph is a cover graph Γ̃ with admissible involution ι

with 2n ≥ 2 edges such that: Γ̃ admits disjoint, connected subgraphs Γ̃1 and Γ̃2, with Γ̃1 and Γ̃2

connected by exactly 2n edges
{
ẽ−1 , ẽ

+
1 , . . . , ẽ

−
n , ẽ

+
n

}
and ι(Γ̃i) = Γ̃i for i = 1, 2 and ι(ẽ±i ) = ẽ∓i for

i = 1, . . . , n.

The closure of Friedman smith curves of order n is denoted FSn. This will be all the

degenerations of Friedman-Smith graphs of order n. The set FSn is codimension n in Rg+1.

5.7 The cone of quadratic forms associated to an admissible double cover

of graphs

As described in [CMGHL17b], associated to an admissible double cover of graphs π : Γ̃→ Γ

is a cone of quadratic forms. We now recall this construction.

Let ι be the admissible involution of Γ̃ associated to the admissible double cover, and fix an

orientation φ̃ of Γ̃ so that ι is an involution of the oriented graph (Γ̃, φ̃). The involution ι determines

an involution of H1(Γ̃,Z) and of H1(Γ̃,Z). We denote using ± superscripts the ± eigenspaces of

the action of ι, and we set H1(Γ̃,Z)[−] := H1(Γ̃,Z)/H1(Γ̃,Z)+. It is often convenient to identify

H1(Γ̃,Z)[−] as the image of the map

1

2
(Id−ι) : H1(Γ̃,Z)→ H1(Γ̃,

1

2
Z). (5.7.1)
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We have also that H1(Γ̃,Z)− =
(
H1(Γ̃,Z)[−]

)∨
. Finally, for each edge e of Γ (oriented with the

given orientation of Γ), we fix a cocycle `e ∈ H1(Γ̃,Z)− by the rule

`e :=

 ẽ∨ − ιẽ∨ if ιẽ∨ 6= −ẽ∨ ∈ H1(Γ̃,Z),

ẽ∨ if ιẽ∨ = −ẽ∨ ∈ H1(Γ̃,Z),

where we are taking ẽ to be an edge of Γ̃ lying above e, with the canonical orientation.

Remark 5.7.1. We have the following possibly more elementary ways to parse the definition

of `e. First, `e is the primitive element of H1(Γ̃,Z) in the real ray generated by ẽ∨ − ιẽ∨ in

H1(Γ̃,R). Alternatively, since H1(Γ̃,Z) = H1(Γ̃,Z), we can evaluate ẽ∨ and ιẽ∨ on cycles. We

define `e = ẽ∨− ιẽ∨, unless on every basic cycle γ of Γ̃ (every edge appears with multiplicity ±1, 0)

we have `e(γ) = 0, 2.

The cone of quadratic forms associated to π : Γ̃→ Γ is the cone:

σ(Γ̃/Γ) := R≥0〈`2e〉e∈E(Γ) ⊆
(

Sym2H1(Γ̃,Z)[−]
)∨
R
.

See [CMGHL17b, §5.2] for more details.

5.7.1 Computing the cone of quadratic forms

In this subsection we describe a method of finding σ(Γ̃,Γ) computationally in examples.

Specifically, one computes a basis z1, . . . , zn of H1(Γ̃,Z)[−]. In light of (5.7.1), in practice, one can

compute a basis of H1(Γ̃,Z), and then compute a basis for the image of 1
2(Id−ι) from this.

We then obtain the basis z∨1 , . . . , z
∨
n of H1(Γ̃,Z)[−] = H1(Γ̃,Z)−. If we enumerate the edges

e1, . . . , em of the base graph Γ, then we can express the `ej in terms of the basis z∨1 , . . . , z
∨
n as

`ej =
∑
i

`ej (zi)z
∨
i .

The matrix (`ej (zi))i,j then has columns that in the chosen bases represent linear forms whose

squares are the extreme rays of the cone σ(Γ̃/Γ).
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5.7.2 Computing the monodromy cone in an example: Friedman–Smith covers

The following example is taken verbatim from [CMGHL17b, §6.2]. Let π : C̃ → C be a

Friedman–Smith cover with 2n ≥ 2 nodes. The dual graph Γ̃ of C̃ has vertices V (Γ̃) = {ṽ1, ṽ2} and

edges E(Γ̃) = {ẽ+
1 , ẽ

−
1 , . . . , ẽ

+
n , ẽ

−
n }. The involution ι acts by ι(ṽi) = ṽi (i = 1, 2) and ι(ẽ+

i ) = ẽ−i

(i = 1, . . . , n). For simplicity, we will fix a compatible orientation on Γ̃, as in Figure 11.1; i.e. for

all i set t(ẽ±i ) = ṽ2 and s(ẽ±i ) = ṽ1.

Γ̃ •
//

ẽ+n
//

ẽ−n

//
ẽ−1

//
ẽ+1

ṽ1 ṽ2... • Γ •
//
en

//
e1

v1 v2... •

Figure 5.12: Dual graph of a Friedman–Smith example with 2n ≥ 2 nodes (FSn).

One has

H1(Γ̃,Z) = Z〈ẽ+
1 − ẽ

−
1 , . . . , ẽ

+
n − ẽ−n , ẽ+

1 − ẽ
−
2 , . . . , ẽ

+
n−1 − ẽ

−
n 〉. (5.7.2)

Indeed, we have b1(Γ̃) = #E(Γ̃) − #V (Γ̃) + b0(Γ̃) = 2n − 1, since Γ̃ is connected. The 2n − 1

elements listed above are in fact a generating set for H1(Γ̃,Z), as can be easily detected from the

associated matrix. For instance, if one takes the elements in the order ẽ+
1 − ẽ

−
1 , ẽ

+
1 − ẽ

−
2 , . . . , ẽ

+
n −

ẽ−n , ẽ
+
n−1− ẽ−n and constructs a matrix with rows expressing these elements with respect to the basis

ẽ−1 , ẽ
+
1 , . . . , ẽ

−
n , ẽ

+
n , one obtains a (2n− 1)× (2n) matrix whose first (2n− 1)× (2n− 1) sub-matrix

is upper triangular with all the diagonal entries equal to ±1.

Recall that H1(Γ̃,Z)[−] = H1(Γ̃,Z)/H1(Γ̃,Z)+ and is isomorphic to the image of the map

1

2
(Id− ι) : H1(Γ̃,Z)→ H1(Γ̃,R).

From (5.7.2), one has

H1(Γ̃,Z)[−] ∼= Z〈ẽ+
1 − ẽ

−
1 ,

1

2
(ẽ+

1 − ẽ
−
1 ) +

1

2
(ẽ+

2 − ẽ
−
2 ), . . . ,

1

2
(ẽ+
n−1 − ẽ

−
n−1) +

1

2
(ẽ+
n − ẽ−n )〉.



28

For brevity, set

z1 = ẽ+
1 − ẽ

−
1 , z2 =

1

2
(ẽ+

1 − ẽ
−
1 ) +

1

2
(ẽ+

2 − ẽ
−
2 ), . . . , zn =

1

2
(ẽ+
n−1 − ẽ

−
n−1) +

1

2
(ẽ+
n − ẽ−n )

so that H1(Γ̃,Z)[−] ∼= Z〈z1, . . . , zn〉. Then H1(Γ̃,Z)− =
(
H1(Γ̃,Z)[−]

)∨ ∼= Z〈z∨1 , . . . , z∨n 〉.

Now observe that

H1(Γ̃,Z) = Z〈(ẽ+
1 )∨, (ẽ−1 )∨, . . . , (ẽ+

n )∨, (ẽ−n )∨〉/〈(ẽ+
1 )∨ + (ẽ−1 )∨ + . . .+ (ẽ+

n )∨ + (ẽ−n )∨〉.

It follows that for i = 1, . . . , n,

ι(ẽ+
i )∨ = (ẽ−i )∨ = −(ẽ+

i )∨ if n = 1,

ι(ẽ+
i )∨ = (ẽ−i )∨ 6= −(ẽ+

i )∨ if n ≥ 2.

Consequently, we may choose for i = 1, . . . , n,

`ei :=

 (ẽ+
i )∨ if n = 1,

(ẽ+
i )∨ − (ẽ−i )∨ if n ≥ 2.

For n = 1, `e1 is clearly a basis for H1(Γ̃,Z)−, and so we note that condition (V) of Theorem

5.6 in [CMGHL17b] holds in this case. Now consider the case n ≥ 2. Evaluating the `ei on the

basis z1, . . . , zn, we obtain that

`e1 = 2z∨1 + z∨2

`e2 = z∨2 + z∨3
...

...
. . .

...
...

. . .

`en−1 = z∨n−1 + z∨n

`en = z∨n

Thus, with respect to these bases, transposing the coefficients above, we have that σ(Γ̃/Γ) is

given by the matrix: 
2
1 1

1 1
. . .

. . .
1 1

1 1
1 1

 . (5.7.3)
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5.8 Computing the cone of quadratic forms as matrix algebra

We now consider a matrix algorithm for computing the cone of quadratic forms. We explain

the algorithm with an example.

5.8.1 Step 1: The graph and the associated incidence matrix

Suppose we are given (Γ̃, φ̃, ι). For instance, we will work with the example below:

ṽ0 ṽ−1

ṽ2

ṽ+
1

ẽ−0

ẽ−1

ẽ2

ẽ+0

ẽ+1

Figure 5.13: The graph (Γ̃, φ̃) with the involution ι indicated with the superscripts.
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From the oriented graph we immediately obtain the incidence matrix:

A =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2



ṽ−0 −1 −1 0 0 −1 0

ṽ+
0 0 0 0 0 0 0

ṽ−1 1 0 −1 0 0 0

ṽ+
1 0 1 0 −1 0 0

ṽ−2 0 0 1 1 1 0

ṽ+
2 0 0 0 0 0 0
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5.8.2 Step 2: A basis for the homology of the graph

Given the reduced incidence matrix, we explained before a matrix algorithm for computing

H1(Γ̃,Z) ⊆ C1(Γ̃,Z). Namely, we first compute the reduced row echelon form of A:

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2



1 0 0 1 1 0

0 0 0 0 0 0

0 1 0 −1 0 0

0 0 1 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

We then find a basis for the nullspace of the row reduced matrix ignoring the rows and columns

corresponding to uncovered vertices and edges. In this case the rows corresponding to ṽ+
0 and ṽ+

2

would be ignored and the column corresponding to ẽ+
2 would be ignored.

B =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2


1 −1 1 −1 0 0

1 0 1 0 −1 0

The rows give a basis for H1(Γ̃,Z) inside of C1(Γ̃,Z).
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5.8.3 Step 3: Compute a generating set for H1(Γ̃,Z)[−]

We will use the identification H1(Γ̃,Z)[−] = 1
2(Id−ι)H1(Γ̃,Z) ⊆ C1(Γ̃, 1

2Z). For this we write

down

1

2
(Id−ι) : C1(Γ̃,Z)→ C1(Γ̃,

1

2
Z)

in matrix form:

1

2
(Id−ι) =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2



1
2 −1

2 0 0 0 0

−1
2

1
2 0 0 0 0

0 0 1
2 −1

2 0 0

0 0 −1
2

1
2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Recall, that H1(Γ,Z)[−] can be naturally identified as the image of the map H1(Γ̃,Z)→ H1(Γ̃, 1
2Z)

given by z 7→ 1
2(z − ιz) (see equation 5.7.1). To obtain a generating set for H1(Γ̃,Z)[−] inside of
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C1(Γ̃, 1
2Z), we simply perform matrix multiplication B · 1

2(Id−ι)

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2


1 −1 1 −1 0 0

1 0 1 0 −1 0





1
2 −1

2 0 0 0 0

−1
2

1
2 0 0 0 0

0 0 1
2 −1

2 0 0

0 0 −1
2

1
2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

=

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2


1 −1 1 −1 0 0

1
2 −1

2
1
2 −1

2 0 0

The resulting matrix gives us a matrix C with rows that are a generating set for H1(Γ̃,Z)[−]

inside of C1(Γ̃, 1
2Z):

C =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2


1 −1 1 −1 0 0

1
2 −1

2
1
2 −1

2 0 0

5.8.4 Step 4: Compute a basis for H1(Γ̃,Z)[−]

Next we compute a basis for H1(Γ̃,Z)[−] inside of C1(Γ̃, 1
2Z). For this we simply perform

integral row reduction on the matrix C (i.e., with row operations that are given by integral matrices,

with determinant ±1). In our example, we obtain the matrix

D =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2[ ]

1
2 −1

2
1
2 −1

2 0 0

whose rows give a basis for H1(Γ̃,Z)[−] inside of C1(Γ̃, 1
2Z).
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5.8.5 Step 5: Compute the cone of quadratic forms

For this, we simply need to evaluate the linear forms `e on each of the basis elements of

H1(Γ̃,Z)[−]. In fact, it is easy to see that we can simply evaluate ẽ∨ − ιẽ∨ on the basis elements

instead, and divide by powers of 2 if need be at the end. This makes the matrix form easier to

describe. In other words, in our example we compute:





1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 0 0

DT =





1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 0 0





1
2

−1
2

1
2

−1
2

0

0

=





1

1

0

Finally, we divide each nonzero row in the output matrix by powers of 2 until no entry is divisible

by 2. The transpose Q of this output matrix has columns that define linear forms whose squares

are the extreme rays of the cone of quadratic forms

Q =

`e0 `e1 `e2[ ]
1 1 0

.

Visually Q is easy to compute from D: one simply takes the difference of the subsequent entries in

the rows, and then divides the resulting columns by 2 until they are primitive.
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5.8.6 A remark about half integers

For computational purposes it can be useful to avoid half integers. This can be easily accom-

plished in the following way. In Step 3, we can use the matrix (Id−ι), instead of 1
2(Id−ι). This

will have the result of multiplying the matrix C by 2. Then in Step 4, since integral row operations

commute with multiplication by 2, the integral row operations in Step 4 will end up giving 2D.

Then in Step 5, the output of the first matrix multiplication will differ by a factor of 2; but since

in the end we are dividing each row by factors of 2, the final result is the same.

5.9 The Friedman–Smith computation revisited

We now do the Friedman–Smith computation using the matrix algorithm we just described.

We have the incidence matrix:

A =

ẽ−1 ẽ+
1 ẽ−2 ẽ+

2 · · · ẽ−n ẽ+
n ṽ1 −1 −1 −1 −1 · · · −1 −1

ṽ2 1 1 1 1 · · · 1 1

Next we compute the reduced row echelon form of A:

ẽ−1 ẽ+
1 ẽ−2 ẽ+

2 · · · ẽ−n ẽ+
n 1 1 1 1 · · · 1 1

0 0 0 0 · · · 0 0
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We then augment with appropriate rows to obtain

ẽ−1 ẽ+
1 ẽ−2 ẽ+

2 · · · ẽ−n ẽ+
n



1 1 1 1 · · · 1 1

0 −1 0 0 · · · 0 0

0 −1 0 · · · 0 0

...
. . .

...

...
. . .

...

0 0 0 0 · · · −1 0

0 0 0 0 · · · 0 −1

We then drop the first column (the column that is a basis vector), and transpose, to obtain the

matrix

B =

ẽ−1 ẽ+
1 ẽ−2 ẽ+

2 · · · ẽ−n ẽ+
n



1 −1 0 0 · · · 0 0

1 0 −1 0 · · · 0 0

1 0 0 −1 · · · 0 0

...
. . .

...

...
. . .

...

1 0 0 0 · · · −1 0

1 0 0 0 · · · 0 −1

The rows give a basis for H1(Γ̃,Z) inside of C1(Γ̃,Z). To obtain a generating set for H1(Γ̃,Z)[−]

inside of C1(Γ̃, 1
2Z), we first perform matrix multiplication (Id−ι)BT





1 −1 0 0 · · · 0 0

−1 1 0 0 · · · 0 0

0 0 1 −1 · · · 0 0

0 0 −1 1 · · · 0 0

...
. . .

...

0 0 0 0 · · · 1 −1

0 0 0 0 · · · −1 1





1 1 1 · · · 1 1

−1 0 0 · · · 0 0

0 −1 0 · · · 0 0

.

..
. . .

...

...
. . .

...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1

=





2 1 1 1 · · · 1 1

−2 −1 −1 −1 · · · −1 −1

0 0 1 −1 · · · 0 0

...
. . .

...

0 0 0 0 · · · −1 1

0 0 0 0 · · · 1 −1
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The transpose of the resulting matrix gives us a matrix C with rows that are a generating set for

2H1(Γ̃,Z)[−] inside of C1(Γ̃,Z):

C =

ẽ−1 ẽ+
1 ẽ−2 ẽ+

2 · · · ẽ−n ẽ+
n



2 −2 0 0 · · · 0 0

1 −1 −1 1 · · · 0 0

1 −1 1 −1 · · · 0 0

...
. . .

...

1 −1 0 0 · · · −1 1

1 −1 0 0 · · · 1 −1

Next we compute a basis for 2H1(Γ̃,Z)[−] inside of C1(Γ̃,Z). For this we simply perform integral

row reduction on the matrix C (i.e., with row operations that are given by integral matrices, with

determinant ±1). This is also known as the Hermite normal form of C

D =

ẽ−1 ẽ+
1 ẽ−2 ẽ+

2 ẽ−3 ẽ+
3 · · · ẽ−n ẽ+

n



1 −1 0 0 0 0 · · · 1 −1

0 0 1 −1 0 0 · · · −1 1

...
. . .

...

0 0 0 0 0 0 · · · −2 2

whose rows give a basis for 2H1(Γ̃,Z)[−] inside of C1(Γ̃,Z). To compute the cone of quadratic forms,

we consider
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1 −1 0 0 0 0 · · · 0 0

0 0 1 −1 0 0 · · · 0 0

0 0 0 0 1 −1 · · · 0 0

. . .

0 0 0 0 0 0 · · · 1 −1

DT =





2 0 0 · · · 0

0 2 0 · · · 0

0 0 2 · · · 0

. . .

2 −2 −2 · · · −4

Finally, we divide each nonzero row in the output matrix by powers of 2 until no entry is divisible

by 2. The transpose Q of this output matrix has columns that define linear forms whose squares

are the extreme rays of the cone of quadratic forms

Q =

`e0 `e1 `e2 · · · `en



1 0 0 · · · 1

0 1 0 · · · −1

0 0 1 · · · −1

. . .

0 0 0 · · · −2

.

Visually Q is easy to compute from D: one simply takes the difference of the subsequent entries in

the rows, and then divides the resulting columns by 2 until they are primitive.
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5.9.1 A few observations on row operations

Note that using row operations, we can put this matrix in the form

`e0 `e1 `e2 · · · `en



1 0 0 · · · −1

0 1 0 · · · −1

0 0 1 · · · −1

. . .

0 0 · · · 1 −1

0 0 0 · · · 2

,

which is the form used in [CMGHL17b, App. A], and is easily derived from the first matrix we

computed via row operations, and taking negatives of columns. Further row operations give the



40

matrix

`e0 `e1 `e2 · · · `en



1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0

. . .

0 0 · · · 1 −1

0 0 0 · · · 2

,

This version also seems to frequently appear in particular computations.



Chapter 6

Implementing the cover graph class

Given an oriented admissible cover (Γ̃, ι,Γ, φ) we are going to implement the data in code,

called the CoverGraph class. The CoverGraph class contains five essential objects:

• A dictionary called configs which contains the specific information about the number of

edges, vertices, and loops

• Two Boolean arrays CV for covered vertices and CE for covered edges. These Boolean arrays

will store information about whether each edge or vertex is fixed by the corresponding

involution in the covering graph. These will be discussed at the end of section 6.1

• Two incidence matrices, one called IM which will be used for calculating a basis of the

homology and another called sage IM which will be a slight modification of IM which will

be appropriately formatted to implement the SAGE graph isomorphism checking.

6.1 The two incidence matrices

The cover incidence matrix, which we call IM, is similar to incidence matrix from the graph

class. It is a matrix taking entries in {−1, 0, 1}. Similar to section 3.4, rows will correspond to

vertices and columns will correspond to edges. A −1 entry will signify the start of an edge and a 1

will signify the terminal vertex for an edge. However, a difference between cover incidence matrix

and an incidence matrix is that cover incidence matrix will always have the number of columns

being twice the number of edges in the base graph and the number of rows being twice the number
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of vertices in the base graph. The idea is that we allow space for every possibility of vertices and

edges in the cover graph, even if in the specific example, an option is not realized.

Before giving the precise definition, we begin with the following example.

v0 v1

v2

e0

e1
e2

Figure 6.1: Oriented base graph (Γ, φ)

The oriented base graph (Γ, φ) has three vertices and three edges, and has the following

Incidence Matrix (see §3.4).

Incidence Matrix(Γ) =


−1 0 −1

1 −1 0

0 1 1


The oriented covering graph (Γ̃, φ̃) is defined by the figure below:

ṽ0 ṽ−1

ṽ2

ṽ+
1

ẽ−0

ẽ−1

ẽ2

ẽ+0

ẽ+1

Figure 6.2: Oriented cover graph (Γ̃, φ̃) of (Γ, φ)
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This dual graph to the cover will have the following cover incidence matrix,

IM =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2



ṽ−0 −1 −1 0 0 −1 0

ṽ+
0 0 0 0 0 0 0

ṽ−1 1 0 −1 0 0 0

ṽ+
1 0 1 0 −1 0 0

ṽ−2 0 0 1 1 1 0

ṽ+
2 0 0 0 0 0 0

Observe:

• Row 1 corresponds to ṽ−0 , row 2 corresponds to ṽ+
0 , row 3 corresponds to ṽ−1 , row 4 corre-

sponds to ṽ+
1 , and so on.

• Column 1 corresponds to ẽ−0 , column 2 corresponds to ẽ+
0 , column 3 corresponds to ẽ−1 ,

column 4 corresponds to ẽ+
1 , and so on.

• The vertices ṽ−0 and ṽ−2 are uncovered and thus row 2 and row 6 are zero rows.

• Edge ẽ−2 is uncovered and thus column 6 is a zero row.

• Each edge comes with an orientation in this notation.

The reason why we are handling edges or vertices fixed by ιE and ιV in this manner is

because when iterating through all possible covering graphs for a given base graph we must have

the incidence matrix dimensions be consistent for each scenario. Due to the fact that every cover
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incidence matrix will have the same dimensions we need a good way to keep track of whether a

specific edge (or vertex) in the base graph corresponds to an edge (or vertex) in the cover graph

which is fixed by the involution. This information will be stored in the boolean arrays CV for covered

vertices and CE for covered edges. We will see why this method of cover incidence matrix is useful

when we discuss calculating a basis of homology.

The Boolean arrays CV and CE keep track of whether the edge (or vertex) in the base graph

corresponds to an edge (or vertex) in the cover graph fixed by the involution; in other words, they

keep track of zero columns (and zero rows). The ith entry of covered edges (or covered rows) will

be a 1 if π−1(ei) =
{
ẽ−i , ẽ

+
i

}
(if π−1(vi) =

{
ṽ−i , ṽ

+
i

}
) or a 0 if π−1(ei) = {ẽi} (if π−1(vi) = {ṽi}).

In the above example we have,

covered edges =

e0 e1 e2[ ]
1 1 0

, covered verts =

v0 v1 v2[ ]
0 1 0

The other kind of incidence matrix we have in the CoverGraph class is called sage IM. This

incidence matrix is constructed by taking a copy of the cover incidence matrix IM and deleting the

zero rows and zero columns (the red rows and columns in the above example). Therefore in the

above example we have,

sage IM =



−1 −1 0 0 −1

1 0 −1 0 0

0 1 0 −1 0

0 0 1 1 1


Observe here that the rows still correspond to vertices and the columns still correspond to edges but

there is not a direct link between the vertices and edges of this incidence matrix and the vertices

and edges of the cover graph. The sole purpose of sage IM is to create a new SAGE graph class
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instance and use it to check isomorphism. We will not be using the sage IM to calculate anything

along the lines of homology. Finally, this is a good place to recall that we have ruled out the case

where there are loops in the cover graph (see section 5.5).

6.2 Basis of linear forms

Given an oriented, finite graph (Γ̃, φ̃) with an admissible oriented involution ι let C0(Γ̃,Z) be

the free Z-module generated by V (Γ̃) and C1(Γ̃,Z) be the free Z-module generated by ~E(Γ̃) (the

oriented edges). Recall we define the boundary map as

∂ : C1(Γ̃,Z)→ C0(Γ̃,Z)

given as ∂(ẽ) = t(ẽ)−s(ẽ). Define H1(Γ̃,Z) to be ker ∂. The involution ι of Γ̃ induces an involution

of C•(Γ̃,Z) and H•(Γ̃,Z). Following the notation of [CMGHL17b, §3.2], define H1(Γ̃,Z)± to be the

eigenspaces of the action of ι on H1(Γ̃,Z).

We can consider
(

1
2(Id− ιE)

)
: H1(Γ̃,Z)→ 1

2H1(Γ̃,Z). Then we define

H1(Γ̃,Z)[−] = Im

(
1

2
(Id− ιE)

)
⊆ 1

2
H1(Γ̃,Z).

Let C•(Γ̃,Z) = Hom(C•(Γ̃,Z)) be the cochain complex associated to C•(Γ̃,Z) and then

H•(Γ̃,Z) is the homology associated to the cochain complex. Notice that H i(Γ̃,Z) = Hi(Γ̃,Z)∨

and

H i(Γ̃,Z)[±] =
(
Hi(Γ̃,Z)±

)∨
for i = 0, 1. By definition C1(Γ̃,Z) = C1(Γ̃,Z)∨ and thus if {ẽi} generates C1(Γ̃,Z), denote {ẽ∨i }

the dual basis of C1(Γ̃,Z). Elements ẽ∨ are called co-edges.

The basis of linear forms will be by definition a choice of linearly independent generators of

the Z-module H1(Γ̃,Z)[−].

Example 6.2.1. Therefore if

H1(Γ̃,Z)[−] = Z 〈ẽi − ιE ẽi〉
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then the basis of linear forms is given as,

H1(Γ̃,Z)[−] = Z
〈
ẽ∨i − ιE ẽ∨i

〉
.

6.3 Functionality of the CoverGraph class

The purpose of the CoverGraph class is to compute a basis of linear forms for each cover

graph. To better understand the way we calculate the basis of linear forms we break up the process

into three steps.

(1) Find H1(Γ̃,Z)

(2) Use H1(Γ̃,Z) to find Im
(

1
2(Id− ιE)

)
called Image CHB in the program and performed by

calling find image chb().

(3) Use Image CHB to find the basis of linear forms, performed by calling find basis linear forms().

Step 1: To find a basis ofH1(Γ̃,Z) we call the CoverGraph class function get Homology basis.

This class function computes the right kernel of the cover incidence matrix as follows,

self.Homology Basis = list(Matrix(self.IM).right kernel().basis()).

The above line of code computes the right kernel of the cover incidence matrix and then returns a

basis chosen by SAGE and finally stores it in a list. Recall, the cover incidence matrix has some zero

columns corresponding to uncovered edges. The last part of the get Homology basis() function

is to remove the basis vectors which correspond to the zero columns of the cover incidence as these

represent uncovered edges and not actual edges in the graph. After the first step we have a basis

of H1(Γ̃,Z) which we can use to find a corresponding dual basis of H1(Γ̃,Z).

Step 2: We are trying to find generators for

H1(Γ̃,Z)[−] = Im

(
1

2
(Id− ιE)

)
.

This process begins by calling the CoverGraph class function find image chb, this function generates

Image CHB which represents Im
(

1
2(Id− ιE)

)
.
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def get Image CHB(self):

#get ident i ty − involution matrix

Identity Minus Edge Involution =

np.zeros((2∗self.configs["edges"],2∗self.configs["edges"]),

dtype=np.int)

for i in range(self.configs["edges"]):

if(self.CE[i]):

Identity Minus Edge Involution[2∗i+1][2∗i]=−1

Identity Minus Edge Involution[2∗i][2∗i+1]=−1

Identity Minus Edge Involution[2∗i][2∗i]=1

Identity Minus Edge Involution[2∗i+1][2∗i+1]=1

HB matrix = np.matrix(self.Homology Basis)

Unreduced Image = np.dot(HB matrix ,Identity Minus Edge Involution)

self.Image CHB = Matrix(ZZ,Unreduced Image).echelon form()

zero rows = []

for row in range(self.Image CHB.nrows()):

is zero = True

for col in range(2∗self.configs["edges"]):

if(self.Image CHB[row,col]!=0):

is zero = False

break

if(is zero):

zero rows.append(row)

if(len(zero rows)>0):

self.Image CHB = self.Image CHB.delete rows(zero rows)
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If we take a closer look at this function we can make the following observations:

• The first part of the function is generating a matrix called Identity Minus Edge Involution.

If n is the number of edges in the base graph than Identity Minus Edge Involution is a

2n × 2n matrix. We construct Identity Minus Edge Involution in diagonal blocks. If

the ith edge is covered the diagonal block will look like 1 −1

−1 1


and if the ith edge is not covered the diagonal block will be the zero matrix.

• The function then defines Unreduced Image to be the matrix product of HB matrix and

Identity Minus Edge Involution where HB matrix is the matrix whose rows are the co-

homology basis.

• Finally the CoverGraph class object Image CHB is found by taking the echelon form of

Unreduced Image over the ring Z and deleting the zero rows. This is done through the use

of the echelon form() function in the SAGE Matrix library. Notice that when we defined

the matrix Image CHB we declared its entries to be in the ring Z and therefore the echelon

form function operations occur over the same ring.

Example 6.3.1. Let us consider the running example from section 6.1. There we found that,

Self.IM =



−1 −1 0 0 −1 0

0 0 0 0 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 1 1 0

0 0 0 0 0 0


.

and covered edges = [1, 1, 0]. The array covered edges tells us that only ẽ2 is fixed by the involution.

Therefore the resulting permutation matrix representing ιE and Identity Minus Edge Involution
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matrix will be,

ιE =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, Identity Minus Edge Involution =



1 −1 0 0 0 0

−1 1 0 0 0 0

0 0 1 −1 0 0

0 0 −1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Next the function multiplies the homology basis by Identity Minus Edge Involution. That is

Image CHB = (HB Matrix) ∗ (Identity Minus Edge Involution)

with zero rows removed.

In the running example we have that dual graph to the cover has first homology generated

by,

HB Matrix =

 1 −1 1 −1 0 0

1 0 1 0 −1 0

 .

After performing the echelon form function and deleting zero rows we calculate Image CHB as,

Image CHB =

(
1 −1 1 −1 0 0

)
.

Step 3: After finding Image CHB we are ready to apply the class function

find basis Linear Forms. To construct the basis of linear forms we start with Image CHB, for

each vector (row) in Image CHB we create a linear form. To do this we look at the array which

stores the information about the covered edges, CE. If the ith edge is not fixed we subtract the

2i+ 1 entry from the 2i entry to get the ith entry of the linear form vector. If the edge is fixed we

take the 2i entry of Image CHB to be the ith entry of Basis Linear Forms. Let us take a look at the

code.

def find basis Linear Forms(self):

self.Basis Linear Forms = []

for j in range(self.Image CHB.nrows()):
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b vector = [0]∗self.configs["edges"]

for i in range(self.configs["edges"]):

if(self.CE[i]):

b vector[i]=self.Image CHB[j][2∗i]−self.Image CHB[j][2∗i+1]

else:

b vector[i]=self.Image CHB[j][2∗i]

self.Basis Linear Forms.append(b vector)

#Make vectors primitive , Divide by two i f poss ib le

for e in range(self.configs["edges"]):

while(self.is divisible by two(e)):

for z in self.Basis Linear Forms:

z[e]/=2

self.Basis Linear Forms = Matrix(self.Basis Linear Forms)

we make the following observations:

• The first part of the code takes a row or vector of Image CHB and cycles through each edge

of the base graph. If the edge in the base graph is covered we subtract the 2i + 1 entry

from the 2i entry to get the ith entry of the linear form vector called b vector. If the edge

is not covered we take the 2i entry of Image CHB to be the ith entry of b vector

• Then we add each b vector to Basis Linear Forms.

• Finally we make each basis vector primitive. To do this we take a basis vector or row of

Basis Linear Forms and check if all entries are divisible by two with the row not identically

zero. We do this with the class function is divisible by two. If the row vector has all

entries which are divisible by two and is not the zero vector we divide all entries by two.

Example 6.3.2. If we continue with our example, recall that e1 is not fixed in the covering graph

so we will take Image CHB[0]-Image CHB[1] and that will be Basis Linear Forms[0] (keep in
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mind that these are usually list of arrays but in our example there is only one array). Also e2 is

not fixed so Image CHB[3]-Image CHB[3] will be Basis Linear Forms[1]. Finally e3 is fixed in

the covering graph so Image CHB[4]=Basis Linear Forms[2]. Hence if

Image CHB =

(
1 −1 1 −1 0 0

)
we would get the row [2, 2, 0]. There is a slight modification, if all the entries in one row are divisible

by 2 then we divide the row by two as may times as possible. Thus,

Basis Linear Forms =

(
1 1 0

)
.



Chapter 7

Generating all Base Graphs

The organization of the computational process can be summarized as follows:

• The first programs generates all base graphs of fixed dimensions (i.e., edges, vertices, and

loops) up to isomorphism. The output is stored in text files.

• The second program loads all base graphs from the text files. It then computes all admissible

2:1 covers up to isomorphism, which are also Friedman-Smith graphs, and outputs the linear

forms whose squares generate the monodromy cone to a text file.

There are two main reasons for this bifurcation in the code. First, the most time consuming

aspect of the computation is graph isomorphism checking. If we separate the graph isomorphism

checking process into two compilations – one for base graphs and one for cover graphs – we can

better gauge the progress of the compile. The second reason for the separation of code is because

under this organizational pattern we have built a database of all base graphs of fixed dimensions

up to isomorphism. After the initial compile these can be easily loaded for multiple different types

of computations.

Now is a good time to recall that we are really interested in unoriented graphs; the orientation

merely provides us with a computational tool that we use to compute useful information. Any

orientation chosen for our unoriented graph will provide us with equivalent information regarding

homology and hence linear forms of our graph. Therefore we are free to choose a specific orientation

which makes enumerating all base graphs easier. Once the vertices are index we can choose the
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canonical orientation which directs edges from smaller indexed vertices to large index vertices. For

example, the following unoriented graph would become the following oriented graph.

v0 v1
e

v0 v1

→
e

Figure 7.1: We give the unoriented graph on the left the canonical orientation which directs edges

from smaller indexed vertices to larger indexed vertices. The graph on the right is the oriented

version of the graph on the left.

7.1 Generating low dimensional base graphs

We start by describing the process of generating low-dimensional base graphs. This process

will be used for generating all graphs with three edges. All higher dimensional graphs will be

constructed recursively using lower dimensional graphs. Therefore we must have a process for

generating our base case non-recursively.

We begin by constructing a list of all possible edges. An edge, in a very basic sense, stores

the information of a terminal vertex and a starting vertex. Computationally we can think of an

edge as a list that stores two integer values. The first value being the initial vertex and the second

value being the terminal vertex of the edge. To construct all edges we construct all lists of length

two taking values within the indexing set of our vertices. This is a rather basic exercise in for loops

and the code is below.

All Edges = []

for i in range(configs["verts"]):

for j in range(i+1,configs["verts"]):

A = [0]∗2

A[0] = i

A[1] = j

All Edges.append(A)
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max value = len(All Edges)−1

The information of the graph is completely stored in a list of integers called

incidence matrix array. Recall that an edge is a column of the incidence matrix. Therefore each

integer in the list of integers incidence matrix array will correspond to an edge of the graph and

thus a column of the incidence matrix (see section 3.4). In the case where the base graph has 3

vertices the list All Edges would look like,

All Edges =

{[
0 1

]
,

[
0 2

]
,

[
1 2

]}
.

In this example, max value is the largest index in All Edges and therefore is 2 (recall indexing

starts at 0). The list incidence matrix array is a list of integers taking values between 0 and 2. To

avoid generating graphs equivalent up to relabeling edges we require that incidence matrix array

is increasing with each entry. For example, if we consider a graph with three edges and three vertices

incidence matrix array =

[
0 1 1

]
The 0 in incidence matrix array represents the edge starting at vertex 0 and ending at

vertex 1. The 1 in incidence matrix array represents the edge starting at vertex 0 and ending

at vertex 2. Therefore we get the following graph from this incidence matrix array.

v0 v1

v2

e0

e1e2

Figure 7.2: The directed graph corresponding to incidence matrix array = [0 1 1].

The objective is to loop through all possible combinations of incidence matrix array where
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the entries are increasing. We can also note that if we define an integer variable max repeat to be

max repeat =

⌊
2edges

vertices

⌋
this will be the maximum times an edge is allowed to repeat itself and have the base graph remain

connected. For a graph to be connected it must have at least the number of vertices minus one

distinct edges. We may still generate some disconnected graphs but those will be discarded later

in the program.

There are two functions that help us generate the low-dimensional base graphs,

Iterate vector and reset vector. The function Iterate vector has two inputs, the list of

integers incidence matrix array (the vector) and an integer m which will represent the max value

variable.

def Iterate vector(vector,m):

for i in range(0,len(vector)):

if(vector[(len(vector)−1)−i]!=m−int(float(i)/max repeat)):

vector[(len(vector)−1)−i] += 1

reset vector(vector,len(vector)−1−i)

return True

return False

To explain this code let us consider the following example. If we have a graph with three

vertices and three edges the maximum number of times we can repeat the same edge will be two

as to make the graph connected (i.e., max repeat=2). The iteration of incidence matrix array

will go as follows.[
0 0 1

]
→
[

0 0 2

]
→
[

0 1 1

]
→
[

0 1 2

]
→
[

1 1 2

]
→
[

1 2 2

]
Notice that we never repeat an integer more than two times. In the code we check

if(vector[(len(vector)−1)−i]!=m−int(float(i)/max repeat)):
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what this is doing is checking that for each value in the array, (vector[len(vector) − 1 − i], is this

value the maximum allowable value α(i), where

α(i) = max value−
⌊

i

max repeat

⌋
.

To help understand this convoluted process let us take a look at our running example. Again,

the number of vertices are 3 and the number of edges are 3. Therefore the max value is 2 and

max repeat is 2. Also len(vector) = 3 which is always the number of edges.

i vector[len(vector)− 1− i] α(i) = max value−
⌊

i
max repeat

⌋
0 vector[2] α(0) = 2

1 vector[1] α(1) = 2

0 vector[2] α(2) = 1

Notice that this is precisely the last iteration of incidence matrix array that we found.

Getting back to the if statement in the Iterate vector function, we see that we are looping

through each value of the vector starting from the back and checking if that value is the maximum

allowable value for that index. If it is we continue the loop and if it is not we add one to the value

at that index and reset the vector after that index. We will discuss the reset vector function next

but first we need to mention what the return statements do. If the function was able to iterate the

vector we return true; otherwise we return false. This will help us use a while loop to perform the

iterations.

The reset vector function takes in two inputs: the vector and an integer i which will be

the index. The function can be summarized as follows, after incrementing a value in

incidence matrix array we need to reset all of the preceding values to the minimum values that

are allowed. Instead of going into the specifics of the code we will use a few examples. Consider

when the incidence matrix array takes the value, incidence matrix array = [ 0 0 2 ], if

we apply the Iterate vector function to incidence matrix array we would loop through the

indices and at i = 0 we see that incidence matrix array[2] already takes on its maximum value.

When i = 1 incidence matrix array[1] = 0 and α(1) = 2 as we calculated in the table. Thus
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Iterate vector increments incidence matrix array[1] to 1 and we need to call

reset vector(incidence matrix array, 1)

this will reset all – in this case one – values after index 1. The minimum allowable value for

incidence matrix array[2] is 1 because we haven’t repeated the value 1 yet and

incidence matrix array becomes [ 0 1 1 ]. Next, consider when incidence matrix array

equals [ 0 2 2 ], the Iterate vector will increment the i = 2 index. Therefore

incidence matrix array[0] = 1 and we call

reset vector(incidence matrix array, 0)

to reset the entries after index 0. The function reset vector will change

incidence matrix array[1] = 1 because we haven’t repeated the value 1 in the array. Then when

we get to index 2 we let incidence matrix array[2] = 2 and this is because we have now repeated

the value 1 twice and max repeat = 2.

At this point we have discussed how to iterate through all combinations of

incidence matrix array. If the base graph contains loops, all of the information of the graph

is not necessarily contained in the list of integers called incidence matrix array. There will be

more information required to determine where the loops occur. To begin this section we discuss

another object which contains the information about the loops called LA.

LA = Partitions(configs["loops"], max length=configs["loops"]).list()

If we are considering graphs with ` loops we define LA to be the list of tuples, each of which is an

integer partition of `. We can index the vertices of a graph anyway we like and therefore we may

choose to have the vertex with loops to be the lowest index vertices. By making this specification

we are eliminating some isomorphic graphs that are just permutations of a graph with loops at

higher indexed vertices.

Suppose we are looking at graphs with 2 loops (` = 2). There are two integer partitions of
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2. Therefore,

LA = [(2), ( 1 1 )].

Consider the first integer partition given by the tuple (2) this implies that the base graph will have

2 loops on the vertex indexed by 0. The partition corresponding to the tuple (1 1) implies that

the base graph will have two loops, one on the vertex index 0 and another on the vertex indexed 1.

To construct a member of the EGraph we call the Construct EGraph function. This function

will have three inputs: LIMA which corresponds to a loop incidence matrix array (i.e., a tuple which

is a partition of `), APE which corresponds to all possible edges (i.e., the list All Edges), and IMA

which represents the incidence matrix array. The function will return a member of the EGraph class

which we will use for isomorphism testing.

def Construct EGraph(LIMA,APE,IMA):

G = DiGraph(configs["verts"],loops=true, multiedges=true)

edge count = 0

IM = np.zeros((configs["verts"],configs["edges"]),dtype=np.int)

for k in range(len(LIMA)):

for j in range(LIMA[k]):

G.add edge(k,k,edge count)

edge count+=1

for j in range(len(IMA)):

G.add edge(APE[IMA[j]][0],APE[IMA[j]][1],edge count)

IM[APE[IMA[j]][0]][edge count] = −1

IM[APE[IMA[j]][1]][edge count] = 1

edge count+=1

E = EGraph(G,IM,configs)

return E

The function begins by defining G to be a digraph that has the required number of vertices,
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allows for loops, and also allows for multiple edges between two vertices. This DiGraph function

is a member of the SAGE graph library. Next we add the edges to our DiGraph G. The first

nested for loops will take the integer partition of the number of loops ` and add those loops to the

DiGraph G using the add edge function from the SAGE graph library. From section 4 we know

that we require three things to initialize a member of EGraph: a DiGraph G, an incidence matrix

IM, and a dictionary configs. After creating the DiGraph G and adding the loops, we add the

non-loop edges and construct IM. Recall that the incidence matrix will record the information of

the non-loop edges by marking a row -1 if the edge starts at the corresponding vertex and marking

a row 1 if the edge terminates at the corresponding vertex (see section 3.4). Finally the function

creates a member of the EGraph class by using the EGraph constructor.

We have now discussed all the preliminaries and are ready to construct all base graphs while

checking for isomorphisms. We should mention that upon discovering a new non-isomorphic base

graph we write the graph to our designated output file which will later be read by a different

program doing specific calculations.

All EGraphs = []

All Graphs = []

Output file = str(configs["verts"])+"V"+str(configs["edges"])+"E"

+str(configs["loops"])+"LBaseGraphs.txt"

with open(Output file ,"w") as f:

Incidence Matrix Array = [0]∗(configs["edges"]−configs["loops"])

reset vector(Incidence Matrix Array ,0)

if(configs["loops"]>0):

for la in LA:

while(True):

E = Construct EGraph(la,All Edges ,Incidence Matrix Array)

if(E.G.is connected()):
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UG = E.G.to undirected()

is new = True

for g in All Graphs:

if(UG.is isomorphic(g)):

is new = False

break

if(is new):

All Graphs.append(UG)

All EGraphs.append(E)

print(len(All EGraphs))

f.write(str(la)+"\n")

f.write(str(Incidence Matrix Array)+"\n\n")

if(not Iterate vector(Incidence Matrix Array ,max value)):

break

Incidence Matrix Array = [0]∗(configs["edges"]−configs["loops"])

reset vector(Incidence Matrix Array ,0)

#No Loops

else:

la = ()

while(True):

E = Construct EGraph no loops(All Edges ,Incidence Matrix Array)

if(E.G.is connected() and not(2 in E.G.degree()

or 1 in E.G.degree())):

UG = E.G.to undirected()

is new = True

for g in All Graphs:
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if(UG.is isomorphic(g)):

is new = False

break

if(is new):

All Graphs.append(UG)

All EGraphs.append(E)

print(len(All EGraphs))

f.write(str(la)+"\n")

f.write(str(Incidence Matrix Array)+"\n\n")

if(not Iterate vector(Incidence Matrix Array ,max value)):

break

One can see that there are two blocks of code within the while loop, one block of code handles

the case when we are dealing with loops in the base graph the other handles the case where there

are no loops. Both blocks of code are very similar. The block that handles the no loops case is a

simplification of the other. Therefore we will only summarize the block pertaining to loops.

After initializing the incidence matrix array to all zeros we reset it such that it does not

have more than the maximum number of repeating integers. Next we check our dimensions for a

positive number of loops. The first for loop loops through all possible partitions of the number of

loops `. Recall if ` = 2 we have the following tuples in the list LA,

LA = [(2), (1 1)] .

The local variable la will represent the loop array which is an integer partition of `. The next

while loop is essentially a do-while loop except Python does not permit do while loops. Therefore

we are looping while True but at the end of the loop we check:

if(not Iterate vector(Incidence Matrix Array ,max value)):

break
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This will break out of the loop when Incidence Matrix Array is done iterating. Next we

construct a member of the EGraph class called E. This process was discussed in section 4. The

next check

if(E.G.is connected()):

uses the SAGE graph library to check if E is connected.

If E is connected and has no vertices of valency less than 3 we begin the isomorphism checking.

The first step is to create an undirected graph from the DiGraph G member of EGraph. We only

test graph isomorphisms on undirected graphs. This is to make the process more efficient and

because we are only interested in unoriented dual graphs. We put a canonical choice of orientation

on the graph solely for the purpose of calculations. We then loop through all previously tested

graphs g in the All Graphs list, implementing the is isomorphic function in the SAGE graph

library. If the graph is not isomorphic to any of the previously tested graphs we add the undirected

graph to the list All Graphs and the EGraph to the list All EGraphs. The last three lines of code

in the while loop are as follows.

print(len(All EGraphs))

f.write(str(la)+"\n")

f.write(str(Incidence Matrix Array)+"\n\n")

The first line prints the length of All EGraphs upon adding a new element. The purpose of

this is to gauge the progress of the compilation. The next two lines of code write to the output

file. We first write the loop array la which will tell us where the loops are. Next we write the

Incidence Matrix Array which will tell us what the edges of the base graph are. The purpose of

writing to an output file is we can easily load the already isomorphism tested graphs into another

Python file which will do other computations (i.e., generate all 2:1 admissible covers of the base

graphs).
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7.2 Recursive base graph generation for all higher dimensional graphs

The process of graph generation is very complicated. The previous sections algorithm is very

intuitive but not the most computationally efficient. We will use the previous section to generate

low dimensional base graphs – specifically the cases where e = 3. After we have created the

foundation for our database we will generate the rest of the base graphs recursively.

When generating the graphs recursively we start the same way we do in the low-dimensional

context. We populate the list All Edges in the same way as section 7.1. Suppose we are

generating all graphs with v vertices, e edges, and ` loops. The first thing we must do is load all of

the lower dimensional GraphShells .

A GraphShell is a new class that is the bare essentials of the graph: the loop array LIMA

and the incidence matrix array IMA . This class serves the purpose of loading lower dimensional

graphs. We read off the loop array and the incidence matrix array from the database and create

all of the GraphShells of the lower dimensional graphs. This provides a fast way of reading and

storing the old graphs.

class GraphShell:

def init (self,LIMA,IMA,configs):

self.LIMA = LIMA

self.IMA = IMA

There are three cases to consider before loading the GraphShells . The first case is when

the number of edges is less than the number of vertices. This only occurs when e = v − 1 because

the graph must be connected. For this special the construction will be summarized as follows:

• Load all graphs with one less edge and one less vertex.

• Adjust the lower dimensional incidence matrix so that it reflects the new number of vertices.

• The higher dimensional graph will have an extra vertex. We create a list of all new edges

that start at any vertex and terminate at the extra vertex.
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• Create the new EGraph .

• Check the new graph for isomorphisms and add to the list if there are no isomorphisms.

if configs["edges"]<configs["verts"]:

lowerDimensionAllEdges = []

for i in range(configs["verts"]−1):

for j in range(i+1,configs["verts"]−1):

A = [0]∗2

A[0] = i

A[1] = j

lowerDimensionAllEdges.append(A)

lowerDimensionGraphShells = LoadGraphs(configs["verts"]−1,

configs["edges"]−1,0);

for shell in lowerDimensionGraphShells:

oldIMA = [x for x in shell.IMA]

newIMA = [x + lowerDimensionAllEdges[x][0] for x in oldIMA]

possibleNewEdges = []

for x in range(1, configs["verts"]):

possibleNewEdges.append(x ∗ configs["verts"] − x ∗ (x + 1) / 2 − 1)

for k in range(len(possibleNewEdges)):

IMA = [x for x in newIMA]

IMA.append(possibleNewEdges[k])

IMA.sort()

E = Construct EGraph no loops(All Edges , IMA)

UG = E.G.to undirected()

if E.G.is connected():
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is new = True

for g in All Graphs:

if (UG.is isomorphic(g)):

is new = False

break

if (is new):

All Graphs.append(UG)

All EGraphs.append(E)

The second case to consider is when ` = 0. Again let v be the number of vertices and

e be the number of edges. First we need to load all GraphShells of dimension v vertices,

e − 1 edges, and ` = 0 loops, call these lowerDimensionalGraphShells . For each shell in

lowerDimensionalGraphShells we will loop through ever edge in All Edges and add it to the

incidence matrix. Next we will sort the incidence matrix – this is for consistency. Finally we will

construct the EGraph and do isomorphism checking in the same way from section 7.1.

elif configs["loops"] == 0:

lowerDimensionGraphShells = LoadGraphs(configs["verts"],

configs["edges"] − 1, configs["loops"])

for shell in lowerDimensionGraphShells:

for edge in range(len(All Edges)):

IMA = [x for x in shell.IMA]

IMA.append(edge)

IMA.sort()

E = Construct EGraph no loops(All Edges , IMA)

UG = E.G.to undirected()

if(E.G.degree().count(1)<3):

is new = True
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for g in All Graphs:

if (UG.is isomorphic(g)):

is new = False

break

if (is new):

All Graphs.append(UG)

All EGraphs.append(E)

The last case is when the base graph has loops. Again we will let v be the number of

vertices, e be the number of edges, and ` 6= 0 be the number of loops. In this case we will load the

GraphShells having dimensions v vertices, e edges, and `− 1 loops. This time, for each shell

in lowerDimensionalGraphShells we will loop through all the vertices and add a loop to each

vertex. There is a slight complication here. In the program that generates all 2 : 1 admissible

covers, it is imperative that the loops occur on the lower indexed vertices. That is, we cannot have

a loop on vertex zero and a loop on vertex four with no loops on vertex one, two, or three. To

remedy this minor adversity we must re-index the vertices of the graph in certain situations. The

question is, in which situations do we need to do this?

First of all if we are adding a loop to the vertex of index zero we do not need to re-index.

Suppose that the loop list, a copy of LIMA , looks like loopList = [`0, `1, `2] and we are adding a

loop at vertex `2. If `1 > `2 we do not need to re-index the graph. Finally, if we are adding a loop

at vertex vn and len(loopList) = n then we do not need to re-index the graph.

In all other cases we will need to re-index the vertices. Suppose that we are adding a loop to

a non-zero index vertex. If len(loopList) = 0. Then we need to transpose the zero vertex with

the vertex we are adding a loop to so that the new vertex becomes the zero vertex. If the loop list

looks like, loopList = [`0, `1, `2] and we are adding a loop to vertex v2 with `1 = `2 then we need

to transpose v1 and v2. Finally, if we are adding a loop at vertex vm and len(loopList) = n with

m > n then we need to transpose vn and vm.
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else:

lowerDimensionGraphShells = LoadGraphs(configs["verts"],

configs["edges"] − 1, configs["loops"] − 1)

for shell in lowerDimensionGraphShells:

IMA = [x for x in shell.IMA]

loopList = [x for x in shell.LIMA]

for v in range(configs["verts"]):

needIMAChange = v>0 and (len(loopList)==0 or (v<len(loopList)

and loopList[v]==loopList[v−1]) or v>len(loopList))

if needIMAChange:

firstIndex = 0

if len(loopList)==0:

loopList.append(1)

firstindex = 0

elif v<len(loopList) and loopList[v] == loopList[v−1]:

firstIndex = loopList.index(loopList[v])

#firs t Index might not be v−1, i . e . lL = (1 ,1 ,1) and v=2

loopList[firstIndex]+=1

elif v>len(loopList):

firstIndex = len(loopList)

loopList.append(1)

else:

raise ValueError(’We have not handled all IMA change cases’)

newIMA = swapVertices(All Edges ,IMA,firstIndex ,v)

E = Construct EGraph(loopList, All Edges , newIMA)

UG = E.G.to undirected()

is new = True
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for g in All Graphs:

if (UG.is isomorphic(g)):

is new = False

break

if (is new):

All Graphs.append(UG)

All EGraphs.append(E)

loopList = [x for x in shell.LIMA]

IMA = [x for x in shell.IMA]

else:

if v==0 and len(loopList)==0:

loopList.append(1)

elif v == 0:

loopList[v] += 1

elif v<len(loopList) and loopList[v]<loopList[v−1]:

loopList[v] +=1

elif v == len(loopList):

loopList.append(1)

else:

raise ValueError(’We have not handled all non−IMA change cases’)

E = Construct EGraph(loopList, All Edges , IMA)

UG = E.G.to undirected()

is new = True

for g in All Graphs:

if (UG.is isomorphic(g)):
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is new = False

break

if (is new):

All Graphs.append(UG)

All EGraphs.append(E)

loopList = [x for x in shell.LIMA]

IMA = [x for x in shell.IMA]



Chapter 8

Generate All Possible Dual Graphs for 2:1 Coverings

We generate all admissible 2:1 covers of our base graphs in a separate Python program. The

first step of the program is to re-populate the All EGraphs list, the list of base graphs, by reading

in the information from the output file produced using the techniques of section 7. We will use the

information from the base graph and the two lists, covered edges abbreviated as CE and covered

verts abbreviated as CV to produce and admissible cover. The two lists, CE and CV, are boolean list

which will record information about whether the corresponding edge or vertex is fixed or unfixed by

the involutions ιV and ιE . Essentially, for every base graph we will cycle through every combination

of CV and CE and check whether the resulting covering incidence matrix is an admissible cover.

In the case where the base graph has loops there are normally two ways to cover the loop in

the base graph (see section 5.4). We are able to reduce the case to 2:1 covers that contain no loops

in the cover (see section 5.5). Therefore if there is a loop in the base graph at vertex vi we can

guarantee that the vertex vi must be covered and thus CV[i] = True. Recall that we chose to label

the vertices such that any loops would occur on the lowest indexed vertices. We also chose to label

edges such that loops are the lowest indexed edges. Thus if there are ` loops in the base graph the

first ` entries of CE must be True.

8.1 Generating all possible values of CE and CV

Before generating any cover graphs we must populate the lists APEC and APVC which stand

for all possible edge covers and all possible vertex covers respectively. From the arguments di-
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rectly above about loops we are able to initialize some entries of the CE list to always be True.

Verifying that loop vertices are covered and thus correspond to True values in CV will be dis-

cussed in section 8.2. To generate all possibilities for CE and CV we need to discuss to functions

called reset Boolean List and iterate Boolean List. These two functions will be very similar

to Iterate vector and reset vector from section 7.1. Before we were iterating through a list of

integers and now we are iterating through a list of Boolean values (i.e., True and False).

def reset Boolean List(B, col):

if(col == len(B)−1):

return

for i in range(col+1,len(B)):

B[i] = False

def iterate Boolean List(B):

for i in range(len(B)):

if(B[len(B)−1−i] == False):

B[len(B)−1−i] = True

reset Boolean List(B,len(B)−1−i)

return True

return False

Looking at the above code we see that iterate Boolean List takes a Boolean list B which

will be CE or CV (and later ccl edges isCrossed) and starts from the last index in the list, B[len(B)-

1] and checks if the entry is False. If we reach an entry of B which is False we set it to be True

and reset the vector to be all False after the index we changed by calling the reset Boolean List

function. If we consider a base graph with three edges and no loops the progression of CE is as

follows. [
False False False

]
→

[
False False True

]
→

[
False True False

]
→[

False True True

]
→

[
True False False

]
→

[
True False True

]
→[

True True False

]
→

[
True True True

]
If we had loops in the base graph some of the initial values would be fixed to be true

throughout all iterations. We are now ready to populate APEC and APVC .
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APEC = []

CEdges = [false]∗configs["edges"]

for l in range(configs["loops"]):

CEdges[l] = True

while(True):

CE = list(CEdges)

APEC.append(CE)

if(not iterate Boolean List(CEdges)):

break

APVC = []

CVerts = [False]∗configs["verts"]

APVC.append(FV)

while(True):

CV = list(CVerts)

APVC.append(CV)

if(not iterate Boolean List(CVerts)):

break

The two list APEC and APVC will give us all possible combinations of vertex and edge

coverings. It turns out that many of these combinations will not lead to admissible covers but this

gives us a way to check all possibilities. The next step is to talk about how to check whether a

potential cover graph is admissible but before we can do this we need to discuss the scenario of

edges becoming crossed in the cover graph.
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8.2 Resolving Crossings in the Covering Graph

A very observant reader will notice that we are making a choice in the case where an edge ei

is not fixed by ιE and both s(ei) and t(ei) are also not fixed by ιV . There are two options for this

covering.

ṽ−i ṽ−i+1

ṽ+
i+1ṽ+

i

ẽ−j

ẽ+j

Figure 8.1: Covering Option 1

ṽ−i ṽ−i+1

ṽ+
i+1ṽ+

i

ẽ−j

ẽ+j

Figure 8.2: Covering Option 2

In the case of covering option 2 we say that the edge ej lifts to crossing edges ẽ−j and ẽ+
j . Before

we talk about handling multiple covering options we need a definition.

Definition 8.2.1. If e is an edge in Γ, covered by distinct edges ẽ+, ẽ− such that s(e) and t(e) are

both not fixed by the involution ιV then we will call the edge e a completely covered edge (see

Figures 8.1 and 8.2). Let v1 = s(e) and v2 = t(e). By assumption, there are distinct vertices ṽ±1

(resp. ṽ±2 ) lying over v1 (resp. v2). Now we say that in this case ẽ+, ẽ− are crossed (with respect

to our choice of labeling of v±i ) if s(ẽ±) = ṽ±1 and t(ẽ±) = ṽ∓2 , or s(ẽ±) = ṽ∓1 and t(ẽ±) = ṽ±2 (see

Figure 8.2). Otherwise, we say ẽ+, ẽ− are uncrossed (see Figure 8.1).
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Remark 8.2.2. It is important to note that the notion of a crossed edge depends on the labeling

of the vertices of the graph. As graphs, Figure 8.1 and Figure 8.2 are isomorphic; we simply

relabel v±i+1 7→ v∓i+1. The importance of the notion of crossed edges comes in to play in the way

we enumerate graphs, by providing a way to reduce the number of isomorphic copies of the same

covering graphs that we construct.

Roughly speaking, the way that we will construct the admissible covers of a given base graph

is to enumerate every possible edge and vertex cover type; e.g., for two distinct vertices joined by

an edge, we can have one or two vertices over each vertex in the base, and one or two edges, meeting

the vertices in the cover graph in various ways. Unfortunately, this is not very efficient. One way

to help keep track of the various possibilities, and hopefully reduce the number of possibilities, is to

consider how many edges are crossed with respect to our choice of labeling. In fact, it is natural to

consider whether there is some choice of labeling that could “uncross” all of the edges. The answer

is no, as demonstrated by the following example.

Example 8.2.3. If we start with the simple base graph Γ depicted below,

v0 v1

v2

e0

e1

e2

Figure 8.3: Base Graph Γ

we can have two potential admissible covers for Γ.
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ṽ−0ṽ+
0 ṽ−1 ṽ+

1

ṽ−2

ṽ+
2

ẽ−0

ẽ−1

ẽ−2

ẽ+0

ẽ+1

ẽ+2

Figure 8.4: Covering e2 using option 1

ṽ−0ṽ+
0 ṽ−1 ṽ+

1

ṽ−2

ṽ+
2

ẽ−0

ẽ−1

ẽ−2

ẽ+0

ẽ+1

ẽ+2

Figure 8.5: Covering e2 using option 2

The two admissible covers are not isomorphic, one is connected and the other is not. This is a

great illustration of why we cannot resolve all crossings in a covering graph.

Unfortunately we cannot resolve all crossings and thus our goal becomes to reduce the maxi-

mum number of edges that can lift to crossings up to isomorphism. This will lead to fewer possible

admissible covers for each base graph with completely covered edges – more importantly less graph
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isomorphism testing.

The first reduction in this process is loops. Any loop in an admissible cover must be a

completely covered edge. We can reduce any admissible covers with loops to graphs of smaller

dimensions (see section 5.5). Furthermore any loop only has one choice of covering (see section 5.4)

and we do not need to create multiple covering options for completely covered edges that are loops.

In making the next reduction we need to define some helpful vocabulary. We are working

with completely covered edges, specifically completely covered edges that are crossed in the covering

graph. The easiest way to resolve a crossing of an edge would be to perform an involution on the

starting or terminal vertex of the edge in the cover graph (i.e., simply relabel the vertices). The

problem with this is that any other completely covered edges sharing a valency with this vertex

may become crossed. In identifying the right vertices to involute we need to consider a special kind

of vertex degree.

Definition 8.2.4. Suppose Γ̃ is an admissible covering graph of a dual graph Γ. Let v ∈ V (Γ)

such that v is not fixed by ιV in Γ̃. Consider all the non-loop edges in E(Γ) that lift to completely

covered edges in Γ̃ which have a valency at v. Suppose that n non-loop edges in Γ lift to completely

covered edges and have a valency at v, we say that v has completely covered edge degree of nv. Also,

assume that m of these edges also lift to crossings (thus m ≤ n), we say that that v has completely

covered crossed edge degree of mv. If mv >
nv
2 we say that the vertex v has overloaded crossed

edge degree; motivation for this terminology will become clear shortly.

Example 8.2.5. Consider the following dual graph Γ and admissible covering graph Γ̃.

v1 v2

v0

e0

e1

e2

e3

ẽ4

Figure 8.6: Base Graph Γ
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ṽ−1ṽ+
1 ṽ−2 ṽ+

2

ṽ−0

ṽ+
0

ẽ−0ẽ+0

ẽ−1

ẽ+1

ẽ−2

ẽ+2

ẽ−3ẽ+3 ẽ+4

ẽ−4

Figure 8.7: Admissible Cover Graph Γ̃

In this example we see the vertex v1 ∈ V (Γ) has overloaded crossed edge degree because

both e1 and e3 lift to crossings in Γ̃; thus mv1 = 2 and nv1 = 3. The vertex v2 ∈ V (Γ) does not

have overloaded crossed edge degree because only e3 lifts to a crossed edge in Γ̃; thus mv2 = 1

and nv2 = 3. Finally, v0 ∈ V (Γ) does not have overloaded crossed edge degree because we do not

consider the loop e0 ∈ E(Γ) when determining crossed edge degree and e1 lifts to a crossing but e2

does not; therefore nv3 = 2 and mv3 = 1.

Lemma 8.2.6. Let Γ̃ be an admissible cover of a dual graph Γ which has n > 0 completely covered

edges that are not loops. Suppose that m of these completely covered edges that are not loops lift to

crossings. If m > n
2 then there exist a vertex in Γ that has overloaded crossed edge degree.

Proof. If n > 0 there exist at least two vertices which are not fixed by ιV in Γ̃. Let S be the set of

vertices that are not fixed by ιV in Γ̃. Using the fact that Γ̃ is an admissible cover, on the set of

vertices S we have 2n valencies coming from completely covered non-looped edges and 2m valencies

coming from completely covered non-loop edges lifting to crossings. Let us assume that there does

not exist a vertex v ∈ S that has overloaded crossed edge degree. Then

2n =
∑
v∈S

nv and 2m =
∑
v∈S

mv
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We are assume that there are no overloaded crossed edge degree vertices in S and so 2mv < nv

for all v ∈ S. Then,

2m =
∑
v∈S

mv <
∑
v∈S

nV
2

=

∑
v∈S nv

2
= n.

This contradiction and therefore there must be a vertex v ∈ S that has overloaded crossed

edge degree.

Lemma 8.2.7. Let Γ̃ be an admissible cover of a dual graph Γ. If there exist a vertex v ∈ V (Γ)

that has overloaded crossed edge degree, then we can perform an isomorphism on Γ̃ that reduces the

number of edges that lift to crossings in Γ̃.

Proof. If v ∈ V (Γ) has overloaded crossed edge degree then suppose that v has a valencies from

edges that lift to crossings and b valencies from edges that do not lift to crossings. Then a > b.

Since v has two distinct vertices ṽ± lying over it, we can construct a new graph Γ̃′ by relabeling

ṽ± by ṽ∓. This is clearly an isomorphic graph since it is a relabeling of two vertices. After this

isomorphism, the a edges having a valency at v that previously lifted to crossings will no longer lift

to crossings and the b edges that previously did not lift to crossings having a valency at v will now

lift to crossings. Given that a > b, we reduced the number of edges that lift to crossings in Γ.

The previous two lemmas prove the following proposition.

Propostion 8.2.8. Let Γ̃ be an admissible cover of a dual graph Γ which has n > 0 completely

covered edges that are not loops. Suppose that m of these completely covered edges that are not

loops lift to crossings. Through a series of isomorphisms we can always reduce m such that m ≤ n
2 .

Proposition 8.2.8 tells us that when the number of completely covered non-loop edges that

lift to crossings in Γ̃, m, exceeds the number of completely covered non-loop edges n, divided by

two we can reduce this cover graph to a cover graph with less edges lifting to crossings. That is if

m >
n

2
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then we do not have to construct a possible cover for this set of CVerts and CEdges . We call

n − 2m the crossingThreshold and use it to reduce the number of possible admissible covers

we need to check.

To implement this reduction we need the class function setNumberCCEdges . This function

is member of the EGraph class and takes in three arguments: the EGraph , CVerts , and

CEdges . The first thing this function does is set the Boolean value are LVs covered (are loop

vertices covered). Recall that all loop vertices must be covered as there is only one option to cover

a loop in the base graph such that the cover graph does not have any loops. If all the loop vertices

correspond to True in CVerts then are LVs covered will be set to True . Conversely if

one of the loop vertices is not covered then are LVs covered will be set to false. In generating all

cover graphs over a base graph, are LVs covered will give a quick check to see if an admissible

cover is possible.

The second step of setNumberCCEdges is to simultaneously set the number of completely

covered edges in E, numberCCEdges , and to construct an array which indicates whether or not

an edge is completely covered in E, ccEdges . To do this we first count all the loops and set

their values to True in ccEdges . Then loop through the rest of the non-loop edges and check

whether or not they are completely covered and act accordingly with respect to numberCCEdges

and ccEdges .

def setNumberCCEdges(self,CV,CE):

loop verts = self.G.loop vertices()

self.are LVs covered = True

for v in loop verts:

if(not CV[v]):

self.are LVs covered = False

break

self.numberCCEdges = self.configs["loops"]
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#Number of completely covered edges including loops

self.ccEdges = [False]∗self.configs["edges"]

#array of completely covered edges that are not loops

#make sure loops are declared cc edges

for e in range(self.configs["loops"]):

self.ccEdges[e]=True

for e in range(self.configs["loops"],self.configs["edges"]):

if(CE[e] and CV[self.start(e)] and CV[self.end(e)]):

self.numberCCEdges +=1

self.ccEdges[e] = True

8.3 Get a possible cover

We first generate possible covers from a specific base graph and elements of the lists APEC

and APVC . These possible covering graphs may not be admissible and the next step will be

checking admissibility. Let us first examine the get Possible Cover IM function in the context

where the base graph will have no completely covered edges – note that this will implicitly base

graphs with loops as loops are completely covered edges.

def get Possible Cover IM no CCEdges(E, CV, CE):

Possible Cover IM = np.zeros((2 ∗ configs["verts"], 2 ∗ configs["edges"]),

dtype=np.int)

# copy base graph

for v in range(configs["verts"]):

for e in range(configs["edges"]):

Possible Cover IM[2 ∗ v][2 ∗ e] = E.IM[v][e]

# Covering Information
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for e in range(configs["edges"]):

# Edge i s covered

if (CE[e]):

if (CV[E.start(e)]):

Possible Cover IM[2 ∗ E.start(e) + 1][2 ∗ e + 1] = −1

else:

Possible Cover IM[2 ∗ E.start(e)][2 ∗ e + 1] = −1

if (CV[E.end(e)]):

Possible Cover IM[2 ∗ E.end(e) + 1][2 ∗ e + 1] = 1

else:

Possible Cover IM[2 ∗ E.end(e)][2 ∗ e + 1] = 1

# No loops in th i s base graph

return Possible Cover IM

This function has 3 inputs: an EGraph class object E, a Boolean list CV which will be an

element of APVC , and a Boolean list CE which will be an element of APEC . The output is a

2-dimensional double list that will serve as the incidence matrix of a potentially admissible cover.

The first step is to input the information of the base graph. Let us go back to the example from

the section 5.3.

v0 v1

v2

e0

e1
e2

Figure 8.8: Base Graph E
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This base graph will have the following Incidence Matrix

E.IM =


−1 0 −1

1 −1 0

0 1 1

 .

After get Possible Cover IM no CCEdges copies the information from the incidence ma-

trix of the base graph E to the new possible incidence matrix Possible Cover IM is as follows,

Possible Cover IM =



−1 0 0 0 −1 0

0 0 0 0 0 0

1 0 −1 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0


where we have padded each row and column with zero rows and columns. Returning to the example

suppose that

CV = [False, True, False] and CE = [True, True, False].

Recall from the definitions of CE and CV in the introduction to section 6 that this implies that

v0 and v2 are not covered (fixed by ιV ) while v1 is covered (not fixed by ιV ). Also e0 and e1 are

covered (not fixed by ιE), while e2 is not covered (fixed by ιE).

Then possible covering graph corresponding to the base graph E with these specific CV and

CE will look like the following.
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ṽ0 ṽ−1

ṽ2

ṽ+
1

ẽ−0

ẽ−1

ẽ2

ẽ+0

ẽ+1

Figure 8.9: Possible Cover of E

The second part of the function deals with the covering information. We loop through CE and

when we reach a covered edge, suppose it has index k, we check to see whether the vertex where

ek starts is also covered. If s(ek)=v` is covered then we give the corresponding ṽ+
` a corresponding

-1 for the edge ẽ+
k . If s(ek) = v` is not covered then we give ṽ−` a corresponding -1 for the edge ẽ+

k .

We treat t(ek) the same.

Let us look at our example. The list CE tells us that e0 is covered, we find that s(e0) = v0

is not covered so the second column, corresponding to ẽ+
0 , of Possible Cover IM will get a -1

in the corresponding ṽ−0 entry. Also t(e0) = v1 and CV tells us that v1 is covered. Therefore the

column corresponding to ẽ+
0 will get a 1 in the ṽ+

1 row. Therefore after dealing with e0 we have,

Possible Cover IM =



−1 −1 0 0 −1 0

0 0 0 0 0 0

1 0 −1 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0


.
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After addressing e1 we get,

Possible Cover IM =



−1 −1 0 0 −1 0

0 0 0 0 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 1 1 0

0 0 0 0 0 0


.

Now in the case where an edge, ek, is not covered we leave the column corresponding to ẽ+
k a zero

column. In the example e2 is not covered and so the last column is zero. That is the output of

Possible Cover IM will be,

Possible Cover IM =



−1 −1 0 0 −1 0

0 0 0 0 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 1 1 0

0 0 0 0 0 0


.

In the context where the base graph has completely covered edges the process is very similar

but there are more aspects to consider. In this situation we allow completely covered edges to lift

to crossings. We will need more inputs in our get Possible Cover IM function to accommodate

this.

We will introduce three new lists. The first list is called cc edges and it is a Boolean list

having the same size as number of edges in the base graph. This list stores the information of

whether or not an edge in the base graph is completely covered, notice that all loops are completely

covered edges by construction. This list will be a member of the EGraph class and is populated

with the function setNumberCCEdges from the EGraph class as discussed in section 8.2.

The second and third lists are called cc edge locations and cc edges isCrossed . The

list cc edge locations will be a list having length equal to the number of completely covered
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edges and each entry is an index of a completely covered edge. The list cc edges iscrossed

is a list with length also equal to the number of completely covered edges. This list represents

whether each completely covered edge lifts to a crossing. The list cc edges isCrossed will be

initially set to all False except for indices that represent loops. Loops must lift to crossings by

construction. We will then iterated through all combinations of cc edges isCrossed . To see

how cc edge locations is populated and how cc edges isCrossed is intitialized, consider

the following code.

# Determine which edges are completely covered

cc edge locations = []

# Get locat ions of completely covered edges

for e in range(configs["edges"]):

if (E.ccEdges[e]):

cc edge locations.append(e)

cc edges iscrossed = [False] ∗ E.numberCCEdges

# make sure loops are always crossed

for i in range(len(cc edge locations)):

if (cc edge locations[i] < configs["loops"]):

#loops come f i r s t in cc edge locations

cc edges iscrossed[i] = True

We are now ready to discuss the function get Possible Cover IM in the context of E

having completely covered edges. This function will have 6 inputs, three more then the context

of no completely covered cycles, the three extra inputs will correspond to the lists cc edges

, cc edge locations , and cc edges isCrossed . As before this function will output a two-

dimensional list Possible IM which will represent the incidence matrix of a potential cover to

the base graph E.

def get Possible Cover IM(E, CV, CE, cc edges , cc edges iscrossed ,
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cc edges locations):

Possible Cover IM = np.zeros((2 ∗ configs["verts"], 2 ∗ configs["edges"]),

dtype=np.int)

# copy base graph

for v in range(configs["verts"]):

for e in range(configs["edges"]):

Possible Cover IM[2 ∗ v][2 ∗ e] = E.IM[v][e]

# e is a loop and must be crossed (no loops in cover graphs )

loop num = 0

graph loops = E.G.loop edges()

for loop in graph loops:

vertex = loop[0]

Possible Cover IM[2 ∗ vertex][2 ∗ loop num] = −1

Possible Cover IM[2 ∗ vertex + 1][2 ∗ loop num + 1] = −1

Possible Cover IM[2 ∗ vertex][2 ∗ loop num + 1] = 1

Possible Cover IM[2 ∗ vertex + 1][2 ∗ loop num] = 1

loop num += 1

# Covering Information

for e in range(configs["loops"], configs["edges"]):

edge start = E.start(e)

edge end = E.end(e)

# Edge i s part of cc l and should be crossed

if (cc edges[e] and cc edges iscrossed[cc edges locations.index(e)]):

Possible Cover IM[2 ∗ edge start][2 ∗ e] = −1

Possible Cover IM[2 ∗ edge start + 1][2 ∗ e + 1] = −1

Possible Cover IM[2 ∗ edge end][2 ∗ e + 1] = 1

Possible Cover IM[2 ∗ edge end + 1][2 ∗ e] = 1
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Possible Cover IM[2 ∗ edge end][2 ∗ e] = 0

elif (CE[e]):

if (CV[edge start]):

Possible Cover IM[2 ∗ edge start + 1][2 ∗ e + 1] = −1

else:

Possible Cover IM[2 ∗ edge start][2 ∗ e + 1] = −1

if (CV[edge end]):

Possible Cover IM[2 ∗ edge end + 1][2 ∗ e + 1] = 1

else:

Possible Cover IM[2 ∗ edge end][2 ∗ e + 1] = 1

return Possible Cover IM

The functions start and end are functions that we input an edge and the function

returns the index of the starting or ending vertex respectively. The first step of

get Possible Cover IM is to input the information from E.IM into Possible IM . The next

step is to deal with the loops. Loops in the base graph must be completely covered and there is only

one way to cover them which corresponds to crossing them in the cover graph. This corresponds to

covering option 2 from the section on loop crossings, section 5.4. After dealing with the initial loop

edges we deal with the non-loop edges. If e corresponds to a non-loop edge the first thing we do is

get the indices of s(e) and t(e), this will be useful when deciding how to cover e. Next we check if

e is a part of a completely covered loop and if e is crossed in the list ccl edges isCrossed . In

this case we fill in the entries of Possible IM corresponding to ẽ+ and ẽ− using covering option

2 in section 8.2. Otherwise, if e is not a part of a completely covered loop and e is covered we fill

in the entries of Possible IM corresponding to ẽ+ and ẽ− using covering option 1 in section 8.2.

Example 8.3.1. In order to better explain the get Possible Cover IM function we will consider

the following base graph.
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v0 v1

v2

e1

e2
e3

e0

Figure 8.10: Base Graph G

Let CV and CE be as follows.

CV = [True, True, True] and CE = [True, True, True, True]

If we apply the class function setNumberCCEdges to the base graph G with CV and

CE defined as such then it would look like,

G.setNumberCCEdges(CV,CE).

Notice that every edge and every vertex is covered; therefore, all edges are completely covered.

That is

cc edges = [True, True, True, True] and cc edge locations = [0, 1, 2, 3].

Suppose we are give the following iteration of cc edges isCrossed .

cc edges isCrossed = [True, True, False, False].

In the function get Possible Cover IM we start by transferring the information from the inci-

dence matrix of G into Possible IM. After this step Possible IM will look as follows.
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Possible IM =



0 0 −1 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0



ṽ−0 ṽ−1

ṽ−2

ṽ+
0 ṽ+

1

ṽ+
2

ẽ−1

ẽ−2 ẽ−3

Figure 8.11: Γ̃ after copying incidence matrix

The next step of get Possible IM is to insert the crossing information from the loops in the

base graph. In our base graph G we have one loop on v0. Therefore after this step Possible IM

will look as follows
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.

Possible IM =



−1 1 −1 0 −1 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0



ṽ−0 ṽ−1

ṽ−2

ṽ+
0 ṽ+

1

ṽ+
2

ẽ−0ẽ+0

ẽ−1

ẽ−2 ẽ−3

Figure 8.12: Γ̃ after handling loops

Next the function will handle the covering information. We loop through all non-loop edges of the

base graph G and interpret how to cover each edge. In the case of e1 we find that s(e1) = v0 and

t(e1) = v1. Then we check and see that e1 is part of a completely covered cycle and corresponds to

a True value in cc edges isCrossed therefore we cover e1 as follows.
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Possible IM =



−1 1 −1 0 −1 0 0 0

1 −1 0 −1 0 0 0 0

0 0 0 1 0 0 −1 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0



ṽ−0 ṽ−1

ṽ−2

ṽ+
0 ṽ+

1

ṽ+
2

ẽ−0ẽ+0

ẽ+1

ẽ−1

ẽ−2 ẽ−3

Figure 8.13: Γ̃ after covering e1

For the next two edges we check and find out that both e2 and e3 are a part of a com-

pletely covered cycle and both correspond to False values in cc edges isCrossed. After

covering these final two edges we return the following Possible IM which will then be tested for

admissibility.
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Possible IM =



−1 1 −1 0 −1 0 0 0

1 −1 0 −1 0 −1 0 0

0 0 0 1 0 0 −1 0

0 0 1 0 0 0 0 −1

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1



ṽ−0 ṽ−1

ṽ−2

ṽ+
0 ṽ+

1

ṽ+
2

ẽ−0ẽ+0

ẽ+1

ẽ−1

ẽ+2 ẽ−2

ẽ+3

ẽ−3

Figure 8.14: Possible Cover of G with

ccl edges isCrossed = [True, True, False, False]

At this point in the program we can taken a base graph E from the list All EGraphs ,

assign it two specific list vc and ec from APVC and APEC respectively, and constructed a

possible covering incidence matrix called Possible IM . We do not know whether this possible

incidence matrix corresponds to an admissible cover. That is, we have not checked the admissibility

conditions discussed in section 5.

8.4 Checking cover graphs for admissibility

After we generate a possible cover graph for a particular base graph the next vital step

will be to check whether the possible incidence matrices actually represents an admissible cover.

At the heart of this process is the is Cover function. Similar to the get Possible Cover IM

function we will have two is Cover functions, one for the situation where the base graph has

no completely covered edges called is Cover noCCEdges and another for the situation where

the base graph has completely covered edges called is Cover . These are the functions which
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takes the possible incidence matrices outputted from the get Possible Cover IM noCCEdges or

get Possible Cover IM functions respectively and checks whether they satisfy the conditions

required to be an admissible cover.

The first function, is Cover noCCEdges , is a simplification of is Cover and therefore

we will only describe is Cover . This function will take in five inputs. The first input is the

two-dimensional list of integers outputted from get Possible Cover IM called PCIM which

represents the possible cover incidence matrix. The second and third inputs will be the Boolean

list CV and CE , as before these will represent the information about the covered vertices and

covered edges. The fourth input is cc edge locations ; this is the same integer list described in

section 8.3. The final input is cc edges isCrossed ; this is the same Boolean list as described

in section 8.3. The function will output a Boolean value which will be True if the possible cover

incidence matrix represents an admissible cover or False if the incidence matrix represents a

non-admissible cover.

def is Cover(PCIM, CVerts, CEdges, cc edge locations , cc edges isCrossed):

#create isCrossed

isCrossed = [false]∗configs["edges"]

for e in range(configs["edges"]):

if(e in ccl edge locations):

if(ccl edges isCrossed[ccl edge locations.index(e)]):

isCrossed[e]=True

for e in range(configs["edges"]):

start1=−1

start2=−1

end1=−1

end2=−1

if(not isCrossed[e] and e>=configs["loops"]):
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if(CEdges[e]):

start1=edge start(PCIM,2∗e+1)

end1=edge end(PCIM,2∗e+1)

if(CVerts[edge start(PCIM,2∗e)/2]):

start2=edge start(PCIM,2∗e)+1

else:

start2=edge start(PCIM,2∗e)

if(CVerts[edge end(PCIM,2∗e)/2]):

end2=edge end(PCIM,2∗e)+1

else:

end2=edge end(PCIM,2∗e)

if(start1!=start2 or end1!=end2):

return false

else:

if(CVerts[edge start(PCIM,2∗e)/2]):

return false

if(CVerts[edge end(PCIM,2∗e)/2]):

return false

#We have constructed the loops such that the w i l l always s a t i s f y the cover

#conditions . Crossed edges w i l l a lso s a t i s f y the c r i t e r i a by construction

return true

If you recall from section 5 we need to check that the involution ι associated to a possible cover

graph Γ̃ is admissible. Therefore we need to check each non-crossed edge to see if δ◦ie(ei) = iv◦δ(ei)

(this implicitly includes loops because all loops are constructed to be crossed). We have already

constructed the crossed edges to specifically satisfy this condition.

The first thing is Cover does is construct a Boolean list called isCrossed with the
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information of which edges are crossed in the cover graph and which edges are not. This Boolean

list may easily be confused with the Boolean list cc edges isCrossed . The difference between

these to Boolean list is that isCrossed is a boolean list that tells whether each edge in the

base graph lifts to a crossing – the length of this Boolean list is the number of edges in the base

graph. The list cc edges isCrossed is a Boolean list which tells whether only the edges which

are completely covered lift to crossings – the length of this list is the number of completely covered

edges.

The purpose of the isCrossed list is to dictate to the function which edges need to be

checked for admissibility and which edges do not. After creating isCrossed we will loop through

the edges in the base graph. If the edge is not a loop and the edge does not lift to a crossing we

need to check it for admissibility. The other cases have been constructed to be admissible.

The check for admissibility proceeds as follows. If an edge e is covered in the covering graph

(i.e., the edge is fixed by the involution ιE), then we need to consider s (ẽ+) and t (ẽ+). This is

because we are verifying that δ(ιE(e)) = ιV (δ(e)) for any edge e. Suppose that e lifts to ẽ− and

ẽ+ – π−1(e) = {ẽ−, ẽ+} – then we need to check that if s(e) is covered in Γ̃ then s(ẽ+) = s̃(e)
+

,

otherwise s(ẽ+) = s̃(e). We also need to check that if t(e) is covered then t(ẽ+) = t̃(e))
+

, otherwise

t(ẽ+) = t̃(e)). If either of these two conditions are false we return that the possible cover graph is

not admissible.

Example 8.4.1. Let e be an edge of the base graph Γ and suppose that e is covered with s(e) = v0

covered and t(e) = v1 not covered. The part of the cover graph Γ̃ above e needs to look like the

following.

ṽ−0 ṽ1

ṽ+
0

ẽ+

ẽ−
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Figure 8.15: Only admissible cover of e in Γ̃

In the case that the edge e is not covered, π−1(e) = ẽ, the program checks the covering

information on s(e) and t(e). In this situation both s(e) and t(e) should be fixed by ιV . If either

s(e) or t(e) is not fixed by ιV then the program returns that the possible cover graph is not

admissible.

At this point we are able to generate all possible covers of a particular base graph and asses

whether each of the possible covers represents an admissible 2 : 1 cover of the base graph. The last

part of this implementation we need to discuss is the isomorphism testing of the cover graphs. As

discussed before, isomorphism testing is a runtime expensive process. It will be helpful to further

select which specific admissible double covers we are interested in before isomorphism testing.

8.5 Friedman-Smith Testing

From [FS86] it is know that Friedman-Smith 2 and 3 degenerations will lead to members

of the indeterminacy locus of the Prym period map under the perfect cone compactification. We

would like to know if any higher order degenerations lead to members of the indeterminacy locus.

Therefore, we need an effective way of determining when an admissible cover is a degeneration of

a Friedman-Smith graph of order 4 or higher.

We define a class function check FS of the Cover Graph class that will determine if each

cover graph is a degree 4 or higher Friedman-Smith cover of a base graph. To check whether a

cover graph is Friedman-Smith we consider the basis of linear forms calculated in subsection 6.3.

We check the determinant of all maximal rank minors of the matrix of linear forms, if any of these

maximal rank minors have a non-unit determinant we know that the cover graph is Friedman-Smith.

The rank of the determinant tells us the degree of the Friedman-Smith cover.

def check FS(self):

FS = False

rank = self.Basis Linear Forms.rank()
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minors = self.Basis Linear Forms.minors(rank)

units = [0,−1,1] #units and zero of ZZ

for m in minors:

if(m not in units):

FS = true

if(FS and rank>3):

self.FS = True

else:

self.FS = False

8.6 Cover graph isomorphism testing and summary

The isomorphism testing of admissible covering graphs is a very important part of this pro-

gram. Without testing for isomorphic cover graphs we would end up with more admissible cover

graphs than we could computationally handle. Unfortunately checking for isomorphisms comes

with a computational cost as well. Each cover graph has potentially twice the dimensions of the

base graphs. The increase in dimension of graphs to be checked for isomorphism takes much more

time for the compiler. As with the case of the base graphs we will be using the SAGE graph class

is isomorphic function which is a version of the Nauty graph isomorphism test.

We briefly mentioned at the beginning of section 8 that the entire program is split into two

parts. One part generates the base graphs and the second part generates the covering information.

We will now summarize the entire second part of the program which deals with getting the covering

information.

(1) We start with all base graphs of fixed dimensions (loops, edges, vertices) and work with

one base graph at a time (see section 7).

(2) For each particular base graph we generate all possible combinations of CE and CV (see

subsection 8.1).
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(3) For a given triple of a base graph E, a Boolean list of covered edges CE , and a Boolean list

of covered vertices CV , we populate the list of completely covered edges called cc edges

using the setNumberCCEdges class function from the EGraphs class (section 8.2).

(4) Given the completely covered edges for the base graph E with specific choices of CV and

CE we initialize a Boolean list called cc edges isCrossed . This Boolean list will dictate

which completely covered edges of the base graph E lift to crossing (section 8.2).

(5) We will iterate though all possibilities of cc edges isCrossed making sure that

cc edges isCrossed never has more crossings than the crossingThreshold (section

8.2).

(6) For a given base graph E, a Boolean list CV , a Boolean list CE , and a Boolean list

cc edges isCrossed we generate a possible cover incidence matrix using the

get Possible Cover IM function (see section 8.3).

(7) We check the possible cover incidence matrix for admissibility using the function is Cover

(section 8.4).

(8) Finally, we first check if the cover graph is Friedman-Smith of order 4 or higher (section 8.5),

is connected, and has a non-empty basis of linear forms. Next we check the Friedman-Smith

admissible cover graphs over a particular base graph E for isomorphism. Unique members

of isomorphism classes will have their basis of linear forms (see section 6) outputted to a

text file which will be later checked for types of quadratic-cone-compactifications.

Remark 8.6.1. It should be noted that we are only comparing cover graphs over a specific base

graph. This will result in generating some isomorphic cover graphs over different base graphs. The

reason for not checking isomorphism over all base graphs is the computational cost would be too

high.

with open(output file , "w") as f:
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with open(second output , "w") as g:

count = 0

for E in All EGraphs:

All CGS For G = []

for vc in APVC:

for ec in APEC:

E.setNumberCCEdges(vc, ec)

#There cannot be any loops in cover graph

#All loops are already covered by construction of APEC.

if (E.are LVs covered):

if (E.numberCCEdges > 0):

# Determine which edges are completely covered

cc edge locations = []

# Get locat ions of completely covered edges

for e in range(configs["edges"]):

if (E.ccEdges[e]):

cc edge locations.append(e)

cc edges iscrossed = [False] ∗ E.numberCCEdges

# make sure loops are always crossed

for i in range(len(cc edge locations)):

if (cc edge locations[i] < configs["loops"]):

#loops come f i r s t in cc edge locations

cc edges iscrossed[i] = True

while (True):

numberCrossedCCEdges = cc edges iscrossed.count(True)

crossingThreshold = E.numberCCEdges+configs["loops"]−

2∗numberCrossedCCEdges
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if(crossingThreshold>=0):

Possible IM = get Possible Cover IM(E, vc, ec, E.ccEdges,

cc edges iscrossed ,cc edge locations)

if (is Cover(Possible IM , vc, ec, cc edge locations ,

cc edges iscrossed)):

CG = CoverGraph(Possible IM , ec, vc, configs)

if (CG.G.is connected() and CG.FS and

CG.Basis Linear Forms.nrows() > 0):

is new = True

for cg in All CGS For G:

if (CG.G.is isomorphic(cg.G)):

is new = False

break

if (is new):

f.write(str(CG.Basis Linear Forms))

f.write("\n\n")

g.write(CG.output())

if (not iterate Boolean List(cc edges iscrossed)):

break

# No CCEdges

else:

Possible IM = get Possible Cover IM no CCEdges(E, vc, ec)

if (is Cover no CCEdges(Possible IM , vc, ec)):

CG = CoverGraph(Possible IM , ec, vc, configs)

if (CG.G.is connected() and CG.FS and

CG.Basis Linear Forms.nrows() > 0):

is new = True
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for cg in All CGS For G:

if (CG.G.is isomorphic(cg.G)):

is new = False

break

if (is new):

f.write(str(CG.Basis Linear Forms))

f.write("\n\n")

g.write(CG.output())



Chapter 9

Example

Consider the following dual graph Γ with three vertices and five edges with one loop.

v1 v2

v0

e0

e1

e2

e3

ẽ4

Figure 9.1: Base Graph Γ

We define configs to be the dictionary storing the values for the edges, vertices and

loops. We initialize a memeber of the EGraph class called E by making a call to the EGraph

constructor as follows,

E = EGraph(Γ, IM, configs).

Here IM will serve as the incidence matrix of Γ defined in 3.4. Let us pick the covered vertices

array and covered edges array to be as follows,

CV = [True, True, True] and CE = [True, True, True, True, True].

Using CV and CE we call the EGraph class function setNumberCCEdges as follows,

E.setNumberCCEdges(CV, CE).
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We notice that e0 is a loop and there are four completely covered edges that are not loops: e1, e2,

e3, and e4. This will set the E.cc Edges array to be

cc edges = [True, True, True, True, True]

and therefore cc edge locations will be defined as,

cc edge locations = [0, 1, 2, 3, 4]

Let cc edges isCrossed be as follows

cc edges isCrossed = [True, True, False, True, False].

We pass in the parameters E, CV , CE , cc edges , cc edge locations, and

cc edges isCrossed into the function get Possible Cover IM which will take the parameters

and then return the following possible cover graph incidence matrix.

Possible IM =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2 ẽ−3 ẽ+

3 ẽ−4 ẽ+
4



ṽ−0 −1 1 −1 0 −1 0 0 0 0 0

ṽ+
0 1 −1 0 −1 0 −1 0 0 0 0

ṽ−1 0 0 0 1 0 0 −1 0 −1 0

ṽ+
1 0 0 1 0 0 0 0 −1 0 −1

ṽ−2 0 0 0 0 1 0 0 1 1 0

ṽ+
2 0 0 0 0 0 1 1 0 0 1

Next we will pass in the parameters Possible IM , CV , CE , cc edge locations, and

cc edges isCrossed into the function is Cover which will check whether given the follow-

ing parameters Possible IM is an admissible cover of Γ. Under these circumstances is Cover

will return True which signifies that Possible IM is an admissible cover of Γ. Therefore we

will create a member of the CoverGraph class with these specifications called CG which we will

associate to Γ̃. The cover dual graph Γ̃ will be as follows,
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ṽ−1ṽ+
1 ṽ−2 ṽ+

2

ṽ−0

ṽ+
0

ẽ−0ẽ+0

ẽ−1

ẽ+1

ẽ−2

ẽ+2

ẽ−3ẽ+3 ẽ+4

ẽ−4

Figure 9.2: Admissible Cover Graph Γ̃

Upon the creation of CG we will calculate the homology of Γ̃ as follows,

H1(Γ̃,Z) =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2 ẽ−3 ẽ+

3 ẽ−4 ẽ+
4



1 0 0 0 −1 1 0 1 0 −1

0 1 0 0 1 −1 0 −1 0 1

0 0 1 0 −1 0 0 1 0 0

0 0 0 1 0 −1 0 −1 1 1

0 0 0 0 0 0 1 1 −1 −1

Next we use CE to construct (id− ι) as follows,
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(id− ι) =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2 ẽ−3 ẽ+

3 ẽ−4 ẽ+
4



1 −1 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 −1 1 0 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 −1 1

we will the perform the matrix multiplication H1(Γ̃,Z) · (id − ι) to get a generating set for 2 ·

H1(Γ̃,Z)[−]. Then we will row reduce over Z and delete zero rows to get a basis of 2 ·H1(Γ̃,Z)[−].

Typically one multiplies by 1
2(id−ι) but to avoid dealing with fractions we work with 2 ·H1(Γ̃,Z)[−].

2 ·H1(Γ̃,Z)[−] =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2 ẽ−3 ẽ+

3 ẽ−4 ẽ+
4 1 −1 0 0 −2 2 −1 1 1 −1

0 0 1 −1 −1 1 −1 1 0 0

Finally we will compute a basis of linear forms on Γ̃. To do this we evaluate ẽ∨ − ιẽ∨ on the basis

vectors of 2 ·H1(Γ̃,Z)[−]. Let us call this basis of linear forms Q.
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QT =

ẽ−0 ẽ+
0 ẽ−1 ẽ+

1 ẽ−2 ẽ+
2 ẽ−3 ẽ+

3 ẽ−4 ẽ+
4



1 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1

·



1 0

−1 0

0 1

0 −1

−2 −1

2 1

−1 −1

1 1

1 0

−1 0



=



2 0

0 2

−4 −2

−2 −2

2 0



We will divide every entry in each row by two to accommodate for working with 2 ·H1(Γ̃,Z)[−] and

therefore we find the basis of linear forms Q as follows,

Q =

`e0 `e1 `e2 `e3 `e4 1 0 −2 −1 1

0 1 −1 −1 0

This program will output all of the bases of linear forms. From the basis of linear forms Q we

may square the basis vectors to obtain a basis of quadratic forms. This will give us the monodromy

cones for each cover. From the monodromy cones we then use another program to determine if the

specific cover lies in the indeterminacy locus.

It should be noted that before we output the basis of linear forms we must check if Γ̃ is a

Friedman-Smith degeneration. To do this we may check the determinants of all the maximally

ranked submatrices of Q. If any determinate is not a unit in Z or 0 then we know that Γ̃ is not

Friedman-Smith. The maximal rank will be the order of the potential Friedman-Smith degeneration.
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In this case we see that the maximal rank of Q is 2 and the submatrix 0 −2

1 −1


will have determinant 2 which implies that Γ̃ is not a Friedman-Smith degeneration.



Chapter 10

A note on the maximum number of edges and vertices on the dual graph of a

stable curve of a given genus

Lemma 10.0.1. Let C be a stable curve of genus g ≥ 2. Then the dual graph of C can have at

most 2(g − 1) vertices and 3(g − 1) edges. Moreover, for every genus g ≥ 2, there exists a stable

curve C of genus g with dual graph having 2(g − 1) vertices and 3(g − 1) edges.

Proof. Let Γ be the dual graph of a curve C. We start with the genus formula. Let e = #E(Γ),

v = #V (Γ), and g(v) be the genus of the normalization of the component of C corresponding to

v ∈ V (Γ). Then

g = e− v + 1 +
∑

v∈V (Γ)

g(v).

If g(v) > 0, we can always degenerate the component of C corresponding to v to a rational nodal

curve. This increases the number of edges of Γ, and preserves the number of vertices. Thus, to

find a curve Γ that has the maximal number of edges or vertices, we can assume that all of the

components are rational nodal curves. In particular, we have

g = e− v + 1.

Now since every component of C is rational, the dual graph must be at least trivalent at each

vertex. If we cut each edge of the dual graph in half, and denote h to be the number of half-edges

(i.e., h = 2e), then the valency condition implies that h ≥ 3v. Thus e ≥ 3v/2. This gives

g = e− v + 1 ≥ 3v

2
− v + 1 =

v

2
+ 1.
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In other words,

v ≤ 2(g − 1).

Since we have g = e− v + 1, this gives

e = (g − 1) + v ≤ 3(g − 1).

Note that this bound on the number of edges also follows from the fact that C is contained in a

codimension e stratum in Mg.

Finally we just need to construct a stable curve of genus g with this number of components

and nodes. We do this as follows (I will call this the It’s-It curve). The curve C has 2(g − 1)

components, which are all smooth rational curves. The curve has 3(g − 1) nodes. The dual graph

looks as follows. Draw a cylinder with circular base. Put (g − 1) vertices on the top circle, and

(g− 1) vertices on the bottom circle. Then connect vertex 1 on the top circle with vertex 1 on the

bottom circle, vertex 2 on the top circle with vertex 2 on the bottom circle, and so on. The end

result looks something like an ice cream sandwich.

Remark 10.0.2. Recall that in regards to the indeterminacy locus of the Prym map ([CMGHL17b,

Thm. 7.1]), the first open case is to determine the indeterminacy of the Prym map PP5 : R5 99K ĀP4 .

Thus, one must consider the case where there are up to 8 vertices and up to 12 edges in the base

graph.

Remark 10.0.3. In another direction, in any genus, one can try to compute up to a given codi-

mension. This means fixing the number of edges e. Since the graphs are connected, we must have

that v ≤ e + 1. Thus, in light of [CMGHL17b, Thm. 7.1], the first open case is 7 edges and 8

vertices.

10.1 Counting vertices and edges for dual graphs in M g,n

For later reference, we also have:
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Lemma 10.1.1. Let (C, p1, . . . , pn) be a stable curve of genus g with n marked points. Then the

dual graph of C can have at most 2(g − 1) + n vertices and 3(g − 1) + n edges.

Moreover, for every genus g ≥ 2, and each n ≥ 0, (or for g = 1 and each n ≥ 1) there exists

a stable curve C of genus g with n marked points with dual graph having 2(g − 1) + n vertices and

3(g − 1) + n edges.

For g = 0, and each n ≥ 3, there can be at most n − 2 vertices and n − 3 edges. Moreover,

there exists a stable curve C of genus 0 with n marked points with dual graph having n− 2 vertices

and n− 3 edges.

Proof. Let Γ be the dual graph of a stable curve C with n marked points. We start with the genus

formula. Let e = #E(Γ), v = #V (Γ), and g(v) be the genus of the normalization of the component

of C corresponding to v ∈ V (Γ). Then

g = e− v + 1 +
∑

v∈V (Γ)

g(v).

If g(v) > 0, we can always degenerate the component of C corresponding to v to a rational nodal

curve. This increases the number of edges of Γ, and preserves the number of vertices. Thus, to

find a curve so that Γ has the maximal number of edges or vertices, we can assume that all of the

components are rational nodal curves. In particular, we have

g = e− v + 1.

Now since every component of C is rational, the dual graph must be at least trivalent at each

vertex. If we cut each edge of the dual graph in half, and denote h to be the number of half-edges

(i.e., h = 2e+ n), then the valency condition implies that h ≥ 3v. Thus e ≥ (3v− n)/2. This gives

g = e− v + 1 ≥ 3v − n
2

− v + 1 =
v − n

2
+ 1.

In other words,

v ≤ 2(g − 1) + n
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Since we have g = e− v + 1, this gives

e = (g − 1) + v ≤ 3(g − 1) + n.

Note that this bound on the number of edges also follows from the fact that C is contained in a

codimension e stratum in Mg,n.

For M0,n we simply use that the dimension is n− 3, and so there can be at most n− 3 edges.

The fact that the first Betti number of the graph is 0, and it is connected, implies that it is a tree,

so that it has n− 2 vertices (if it has n− 3 edges).

Finally we just need to construct a stable curve of genus g and n marked points, with this

number of components and nodes. We do this as follows. For g ≥ 2, the curve C has 2(g − 1) + n

components, which are all smooth rational curves. The curve has 3(g − 1) + n nodes. The dual

graph looks as follows. Draw a cylinder with circular base. Put (g − 1) vertices on the top circle,

and (g − 1) vertices on the bottom circle. Then connect vertex 1 on the top circle with vertex 1

on the bottom circle, vertex 2 on the top circle with vertex 2 on the bottom circle, and so on. The

end result looks something like an ice cream sandwich. Now along one edge in the top circle, insert

n vertices. This increases the number of edges by n, as well. Now to make this curve stable, add

n half edges (marked points) to these new vertices.

In the case g = 1, simply take a circle of n genus 0 vertices (and n edges) and then add n

half edges to make it stable. In the case g = 0 consider the connected chain graph with n−2 genus

0 vertices and n− 3 edges. Add n− 2 half edges, one for each vertex, and then add one more half

edge to the first and last vertices in the chain.



Chapter 11

Another approach to enumerating degenerations of Friedman–Smith covers

The main obstacle to obtaining new results computationally, as described in the last section,

is that there are too many graphs to check. Thus we need to focus our attention. The main point

is that the indeterminacy locus of the rational Prym map ([CMGHL17b, Thm. 7.1])

PPg : Rg 99K Ā
P
g−1

is understood, except for degenerations of Friedman–Smith covers, in ∂FS4, . . . , ∂FSg. Thus we

should focus on enumerating just these covers, not all admissible covers. This process would

entail enumerating base graphs of lower dimensions and constructing Friedman–Smith graphs by

attaching n edges between two lower dimensional base graphs. This would fix some of the covering

information. For example, each of the n edges between the two lower dimensional base graphs

would have to be unramified in the covering graph. We did not take this approach because the best

way to enumerate FS degenerations would be to do it recursively. This would be the next thing to

try. Using the a modification of the recursive base graph generation code this is a feasible approach

to the problem of enumerating Friedman-Smith degenerations. This technique has the potential to

compute up to the 12-edge case thus completing the g = 5 indeterminacy locus.

Let us recall the dual graphs of Friedman–Smith covers:

If C1 is the smooth curve corresponding to v1 and C2 is the smooth curve corresponding to

v2, then the pairs of genera (g(C1), g(C2)) given by

(1, g − n+ 1), (2, g − n), . . . (bg − n+ 2

2
c, bg − n+ 3

2
c).
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Γ̃ •
//

ẽ+n
//

ẽ−n

//
ẽ−1

//
ẽ+1

ṽ1 ṽ2... • Γ •
//
en

//
e1

v1 v2... •

Figure 11.1: Dual graph of a Friedman–Smith example with 2n ≥ 2 nodes (FSn).

In particular FSn = ∅ in Rg+1 if n ≥ g + 1. Note also that the covers C̃i → Ci are étale, so that

in particular, the curves C̃i have odd genus 2g(Ci)− 1.

The graphs we are interested in, namely dual graphs of degenerations of Friedman–Smith

covers, are those admissible cover graphs that can be obtained from the graphs above by replacing

the vertices with other graphs.

11.1 Enumeration in the special case g = 5

As mentioned above, when considering the map

PP5 : R5 99K ĀP4

which is the first open case, we only need to consider the cones of quadratic forms for graphs coming

from ∂FS4. The only possible genera for the base curves associated to the vertices v1 and v2 are

(1, 1).

Thus, to parameterize the base curves C, we just need to enumerate all dual graphs in M1,4,

and then consider all ways of inserting those into the Friedman–Smith base graphs above. The

computation above says that each dual graph in M1,4 has at most 4 vertices and 4 edges (which

seems within the realm of computable).

After enumerating all dual graphs in M1,4 we can then consider all admissible covers of those

base graphs, (maybe with the given covering edges interchanged as given, but otherwise arbitrary

covers). We can also ignore all loops in the cover graph Γ̃ using the results of section 5.5.



Chapter 12

Results

12.1 Table of computation results

We will will start by giving the number of resulting Friedman–Smith degenerations of order

four or higher in each dimension. The readers should recall that for covering graphs, we are not

doing a complete isomorphism testing in each case. We are only isomorphism testing the covering

graphs over a fixed base graphs. Therefore some covers over different base graphs may be isomorphic

resulting in slightly inflated numbers.

Edges Vertices Loops Number of Base Graphs Number of FSn Graphs (n > 3)

4 2 0 1 1

4 2 1 1 0

4 2 2 2 0

4 2 3 2 0

4 3 0 3 3

4 3 1 4 0

4 3 2 4 0

4 4 0 5 5

4 4 1 4 0

5 2 0 1 1

5 2 1 1 1
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5 2 2 2 1

5 2 3 2 1

5 2 4 3 0

5 3 0 4 20

5 3 1 7 7

5 3 2 8 4

5 3 3 6 0

5 4 0 11 67

5 4 1 13 13

5 4 2 10 0

5 5 0 11 76

5 5 1 9 0

6 2 0 1 1

6 2 1 1 1

6 2 2 2 4

6 2 3 2 3

6 2 4 3 5

6 2 5 3 0

6 3 0 6 45

6 3 1 10 42

6 3 2 14 35

6 3 3 13 21

6 3 4 9 0

6 4 0 22 437

6 4 1 32 175

6 4 2 33 82

6 4 3 17 0
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6 5 0 34 1023

6 5 1 41 248

6 5 2 24 0

6 6 0 29 936

6 6 1 20 0

7 2 0 1 1

7 2 1 1 1

7 2 2 2 4

7 2 3 2 4

7 2 4 3 5

7 2 5 3 5

7 2 6 4 0

7 3 0 7 69

7 3 1 14 91

7 3 2 20 105

7 3 3 22 84

7 3 4 19 50

7 3 5 12 0

7 4 0 37 1298

7 4 1 66 932

7 4 2 81 603

7 4 3 60 249

7 4 4 30 0

7 5 0 85 6816

7 5 1 136 2810

7 5 2 116 984

7 5 3 50 0
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7 6 0 110 13672

7 6 1 125 3158

7 6 2 63 0

7 7 0 70 9140

7 7 1 48 0

8 2 0 1 1

8 2 1 1 1

8 2 2 2 5

8 2 3 2 4

8 2 4 3 7

8 2 5 3 5

8 2 6 4 7

8 2 7 4 0

8 3 0 9 103

8 3 1 18 146

8 3 2 28 186

8 3 3 32 163

8 3 4 33 122

8 3 5 26 66

8 3 6 16 0

8 4 0 61 2960

8 4 1 119 2594

8 4 2 165 2138

8 4 3 150 1225

8 4 4 106 487

8 4 5 44 0

8 5 0 193 26169
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8 5 1 361 15364

8 5 2 390 7821

8 5 3 255 2438

8 5 4 96 0

8 6 0 348 99454

8 6 1 526 36834

8 6 2 408 10048

8 6 3 146 0

8 7 0 339 136618

8 7 1 378 30443

8 7 2 164 0

8 8 0 185 80801

8 8 1 115 0

9 2 0 1 1

9 2 1 1 1

9 2 2 2 5

9 2 3 2 5

9 2 4 3 7

9 2 5 3 7

9 2 6 4 7

9 2 7 4 7

9 2 8 5 0

9 3 0 11 142

9 3 1 23 225

9 3 2 36 297

9 3 3 45 289

9 3 4 48 237
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9 3 5 45 160

9 3 6 35 87

9 3 7 20 0

9 4 0 95 5971

9 4 1 201 5725

9 4 2 299 5164

9 4 3 311 3476

9 4 4 264 1883

9 4 5 162 683

9 4 6 67 0

9 5 0 396 110985

9 5 1 841 70262

9 5 2 1044 40916

9 5 3 867 17303

9 5 4 497 4757

9 5 5 164 0

9 6 0 969 362476

9 6 1 1763 178455

9 6 2 1746 77298

9 6 3 1010 20331

9 6 4 315 0

9 7 0 1318 1026278

9 7 1 1961 359214

9 7 2 1372 85551

9 7 3 437 0

9 8 0 1067 1302916

9 8 1 1132 269473
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9 8 2 444 0

9 9 0 479 664102

9 9 1 286 0

12.2 Interpretation of computations

Let A
P
g be the perfect cone compactification of the moduli space of principally polarized

abelian varieties of dimension g. Let Rg+1 be the normal crossings compactification of the moduli

space of connected étale double covers of curves of genus g + 1. Then the Prym period map

PPg : Rg+1 → Ag does not extend to a regular map Rg+1 → A
P
g . In [Thm. 5.6][CMGHL17b]

the authors give a classification of when the Prym period map extend to a regular map in a

neighborhood of a curve. Friedman and Smith discovered a class of admissible covers in [FS86] for

which PPg does not extend. The main result being

FS2 ∪ FS3 ⊆ Ind(PPg ).

In [Thm. 0.1][Vol02], in the case of the second Voronoi compactification of Ag, being in the

indeterminacy locus of the Prym map is equivalent to being a Friedman–Smith degeneration with

at least 4 nodes. That is, if P Vg : Rg+1 → A
V
g is the extension of the Prym period map in the case

of the second Voronoi compactification then

Ind(P Vg ) =
⋃
n≥2

FSn.

When considering the indeterminacy locus of PPg , the extension over the perfect cone com-

pactification of Ag, the indeterminacy locus will be smaller. In [Thm. 7.1][CMGHL17b] it was

found that

FS2 ∪ FS3 ⊆ Ind(PPg ) ⊆ FS2 ∪ FS3 ∪ δFS4 ∪ · · · ∪ δFSg

where δFSn = FSn − FSn. Moreover,

codimRg+1
Ind(PPg ) r

(
FS2 ∪ FS3

)
≥ 6.
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By this result we have that if g = 1 we have that PP1 extends to a morphism. If g = 2,

Ind(PP2 ) = FS2 and if g = 3, Ind(PP3 ) = FS2 ∪ FS3. Also in [CMGHL17b] it is shown that for

g = 4, Ind(PP4 ) = FS2 ∪ FS3. This poses a question.

Question 12.2.1. For g ≥ 5, is Ind(PPg ) = FS2 ∪ FS3?

In this thesis, through methods of sections 7 and 8 we were able to enumerate all Friedman–

Smith degenerations of order 4 or higher with at most 9 edges in the base graph. This led to the

following result.

Theorem 12.2.2. If C̃ → C is an étale double cover of C such that C̃/C ∈ FSn for n ≥ 4,

the dual graph Γ(C) of C has at most 9 edges, and C̃/C not in FS2 or FS3 then C̃/C is not in

(Ind)(PPg ).

Corollary 12.2.3. Define a subset of étale double covers as follows,

Z10 =
{
C̃/C : |E(Γ(C))| ≥ 10

}
.

Here Z10 is a closed subset of R6 having codimension 10. Let U10 = R6 r Z10. Let PP5 : R6 → A5

be the Prym period map. Then PP5 is regular on U r (FS2 ∪ FS3). That is,

Ind
(
PP5
∣∣
U10

)
= FS2 ∪ FS3.

This does not answer question 12.2.1. In order to completely classify the indeterminacy locus

of the Prym period map in the case of g = 5 we need to allow for all dual graphs with up to

12 edges. Therefore this does not fully answer the question but it does give more insight on the

description of the indeterminacy locus.



Chapter 13

Degeneration of cubic threefolds

13.1 Introduction

A cubic threefold is a smooth hypersurface of degree three in P4. Cubic threefolds have

provided a lot of interesting results in algebraic geometry. For example, Lüroth’s Theorem states

that every unirational curve is rational and Castelnuovo’s Theorem states every unirational surface

is rational but a result from Clemens and Griffiths ([CG72]) shows that while cubic threefolds are

unirational, they are not rational. Their proof uses the fact that the intermediate Jacobian of a

cubic threefold is not the Jacobian of a curve. Here we will study degenerations of intermediate

Jacobians of cubic threefolds, as the cubic threefolds degenerate to a singular cubic hypersurface.

In [Mum74], Mumford showed that the intermediate Jacobians of cubic threefolds are Prym

varieties of connected étale double covers of plane quintics. Therefore singular cubic threefolds can

be studied using the degeneration of intermediate Jacobians which can be computed as degenera-

tions of Prym varieties. In this thesis we will be computing the degeneration data associated to a

cubic threefold with two A1-singularities. The interest in this special case is that while the degener-

ation data for this case was computed in [CMGHL17a] via theta functions, and partial degeneration

data was computed via Pryms in [Hav16], here we would like to describe the degeneration more

completely using Pryms. In principle, from this case, one can compute the degeneration data via

Pryms for all degenerations to cubics with isolated AD singularities.
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13.2 Intermediate jacobian of singular cubic threefolds

Let X be a cubic hypersurface in P4 containing a double point at P . Let π : P4 → P3 be the

projection through the point P . Define C to be the image of all the lines in X that pass through

P . There is a well-know result about the image C in relation to X, see [Hav16, CMJL12] for the

details and the proof.

Theorem 13.2.1. If X is a cubic threefold with isolated singularities then C is a complete inter-

section curve of type (2, 3) such that

BlCP3 ∼= BlPX.

The previous theorem gives us a way of associating a curve C in P3 to a cubic threefold X

with a chosen double point. We call this curve C the (2, 3)-curve which is a complete intersection

of a quadric and a cubic. The next result explains the relationship between the singularities of X

and the singularities of C.

Theorem 13.2.2 ([CMJL12], Prop. 1.3). If X has isolated singularities only, the singularities of

BlPX are in bijection with the singularities of C. Furthermore, the singularites on BlPX and C

have the same singularity types.

We will follow the work of Clemens and Griffiths, in [CG72], to characterize the intermediate

Jacobian of the the cubic threefold X with a unique A1 or A2 singularity at P ∈ X. Let X

be a cubic threefold with a single A1 or A2 singularity at P . By theorem 13.2.1, we know that

BlPX ∼= BlCP3 where C is as described above. By blowing up X at P we are resolving the A1 or

A2 singularity. By theorem 13.2.2 this suggest that both BlPX and C are non-singular. The Hodge

diamond of X̃ = BlPX ∼= BlCP3 was computed in detail in [§2.3][Hav16] and the result is below.
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C

0 0

0 C2 0

0 H1,0(C) H0,1(C) 0

0 C2 0

0 0

C

From this we see that H1,2(X̃)⊕H0,3(X̃) ∼= H0,1(C), and H3(X̃,C) ∼= H1(C,C) which proves

the following theorem.

Theorem 13.2.3 ([CG72]). The intermediate Jacobian of the desingularization X̃ = BlPX of a

cubic threefold X with a single A1 or A2 singularity at P is isomorphic to the jacobian JC of the

(2, 3)-curve C.

13.3 Construction of the plane quintic

We will define the discriminant curve associated to X following Mumford (see [CG72],

[§3.2][Hav16]). Let ` ⊂ X be a general line in X not containing any singular points. We can

parametrize all the two dimensional planes containing ` in P4 by the two dimensional projective

plane P2. Define Π = P2 to be the parameterizing space. That is V ∈ Π represents a plane in P4

containing `. Consider the intersection X ∩ V in X; X is a cubic hypersurface in P4 and therefore

this intersection has to have degree 3. We know the intersection contains the line ` and therefore

X ∩ V is either the union of ` and a conic or the union of ` and two other lines. Denote D ⊂ Π as

the set of V ∈ Π such that X ∩ V is the union of 3 lines. Then D is a quintic in the plane Π (see

[§3.2][CMGHL17a]) with singularities in bijection to the singularities of X respecting singularity

type. Let R = 〈`,Q〉 be the plane spanning ` and a line through Q, then viewing R as a point of

D in Π, it has the same singularity type as Q in X.

Define D̃ to be the curve in the Fano scheme of lines of X whose points represent lines of X
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intersecting ` but ` 6∈ D̃. For `1 ∈ D̃ we have that V ′ = 〈`, `1〉 ∈ D ⊂ Π. That is V ′∩X = {`, `1, `2}.

Define a map π : D̃ → D where

`1 7→ V ′ = 〈`, `1〉 .

This is a double cover of D because π−1(V ′) = {`1, `2}. If we normalize D and D̃ we get the

following commutative diagram

D̃ D

NDND̃

π

π̂

where π̂ is an étale double cover of ND. For this thesis we will assume that D is irreducible and

thus ND is connected.

Propostion 13.3.1 ([Hav16], Prop. 3.2.2). For a cubic threefold X with an An singularity and

an irreducible discriminant D, the curve ND is trigonal.

Using the previous proposition we may apply Recillas’ theorem ([Rec74]) which states that

the Prym variety associated to an étale double cover of a trigonal and non-hyperelliptic curve is

the Jacobian of a tetragonal curve. We will construct the tetragonal curve.

Consider the composition ND̃ → ND → P1 where the preimage of a point in P1 is 6 points

in ND̃ because ND → P1 is degree 3 and ND̃ → ND is degree 2. Let p ∈ P1 then above p we

have {p1, p2, p3} in ND. Above pi we have p±i in ND̃. Therefore a point in the tetragonal curve

will be a triple of points in ND̃ such that the 3 points are mapped to different points of ND but

then mapped to the same point of P1. The triple (p±1 , p
±
2 , p

±
3 ) is a point on the tetragonal curve.

There are 8 choices of points above p ∈ P1. The curve we have constructed will have 2 identical

components and by picking one of the components we have the desired tetragonal curve.

Theorem 13.3.2 ([Hav16], Thm. 3.2.5). For a cubic threefold X having an An singularity, an

irreducible discriminant D, and a non-hyperelliptic ND, the tetragonal curve constructed above is
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isomorphic to the normalization NC where C is the (2,3)-curve obtained from projection through

an An singularity.

The proof of theorem 13.3.2 is provided in detail in [Hav16]. We will need some of the details

of this proof and thus we will provide a sketch of the proof.

A point m ∈ C is a line on X going through the An singularity at Q ∈ X. The two lines m

and ` – the line used for the projection to obtain D – will span a 3-dimensional space W in P4.

The set of 2-dimensional subspaces in W which contain ` will form a line w ⊂ Π.

Consider the intersection Y := X ∩W , Y is a cubic surface with a singularity at Q. For a

general choice of W the singularity of Y at Q is of type A1. A cubic surface with an A1 singularity

contains 21 lines (an exposition of this along with the classification of other singular cubic surfaces

is provide in Cayley’s Memoir on Cubic Surfaces [Cay69]). There are six lines {`1, . . . , `6} which

pass through the singular point Q on Y . The lines `i an `j , 1 ≤ i < j ≤ 6, determines a plane

which cuts out a third line on Y denoted `ij . The lines `ij account for the other 15 lines. The line

`i intersects `rs if i = r or i = s. The line `ij intersects `rs if i, j, r, and s are all disjoint.

We have already identified 2 lines on the cubic surface, ` does not meet at the singularity Q

and m does. Denote ` = `12 and m = `6. The line w ⊂ Π intersects the plane quintic D at R and

three additional points because deg(D) = 5. The three additional points represent 2-dimensional

subspaces of W which contain L and intersect Y at 3 lines. The point R ∈ D corresponds to the

plane which is the span of Q and `12, this plane intersects Y at `1, `2 and `12. The three other

intersection points will correspond to three other triples of lines in Y , each containing `12.

(`12, `34, `56)

(`12, `35, `46)

(`12, `36, `45)

In D the lines {`12, `34, `56} all represent a plane intersecting X in three lines and so they

correspond to a point V ∈ D. In the double cover π : D̃ → D we have π−1(V ) = {`34, `56}. In
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summary, picking a point on the tetragonal curve is equivalent to picking a line `ij from each of

the 3 triples not equal to `12. We can do this by picking the line in the triple that intersects `6.

This will give a map from an open subset of C to the tetragonal curve which is injective and thus

birational. This will give a birational map from NC to the tetragonal curve and because both

curves are smooth this will be an isomorphism.

13.4 Degenerations of Jacobians

The theorems 13.2.3 and 13.3.2 have shown that taking limits of 1-parameter degenerations

of cubic threefolds is equivalent to taking degenerations of 1-parameter Prym variety of unramified

double covers of plane quintics. Recillas’ theorem gives a correspondence to these Prym varieties

and Jacobians of tetragonal curves. Therefore it will be useful to construct the jacobian of nodal

curves.

Given a family of curves X → ∆ over the unit disk the Jacobian of the generic fiber C0 can

be described as the limit of Jacobians of smooth curves. We give this Jacobian as an extension,

0→ H1(Γ,Z)⊗C∗ → JC0 → J(NC)→ 0

where Γ is the dual graph of C0 and NC0 is the normalization of C0. For Jacobians the limit JC0

only depends on the curve C0. In [§3.1][ABH02], the authors give the data required to classify JC0.

(J0) The abelian variety JN0, which is called the compact part, where N0 is the normalization

of the curve C0.

(J1) The lattice H1(Γ,Z) where Γ is the dual graph of C0 and the semi-abelian variety which is

the extension given by the sequence,

0→ H1(Γ,Z)⊗ C∗ → JC0 → JN0 → 0.

The torus H1(Γ,Z) ⊗ C∗ ∼= (C∗)n, n is the rank of H1(Γ,Z), is called the non-compact

part.
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(J2) A class in

Ext1(JN0, H
1(Γ,Z)⊗ C∗) = Hom(H1(Γ,Z), ĴN0).

(J3) The lift τ0 : H1(Γ,Z)×H1(Γ,Z)→ (P−1)∗ where P is the Poincaré bundle over JN0× ĴN0.

(J6) The monodromy cone for JN0

The class in Hom(H1(Γ,Z), ĴN0) from (J2) will be called the classifying map c : H1(Γ,Z)→ ĴN0.

For every edge ej ∈ E(Γ) corresponding to a double point Qj of C0 we have two points, Q−j and

Q+
j in N0. We can associate a line bundle to each edge ej as follows,

ej 7→ ON0(Q+
j −Q

−
j ) ∈ Pic0(N0).

This extends to a linear map C1(Γ,Z)→ Pic0(N0) which descends to a map H1(Γ,Z)→ Pic0(N0) =

JN0. Let Θ be the principal polarization of JN0, then Θ induces an isomorphism φΘ : JN0 →

Pic0(JN0) = ĴN0. The classifying map c : H1(Γ,Z) → ĴN0 can be defined as the following

composition,

c : H1(Γ, Z)→ JN0
φΘ−−→ ĴN0.

This data will define a unique compactified Jacobian which will correspond to a point in the

second Voronoi compactification of Ag. If C0 is stable the image of C0 under the Torelli map will

correspond to this unique compactified Jacobian.

Let us now describe (J3) in a little more detail. It is convenient to view it as a lift:

(P−1)

��
H1(Γ,Z)×H1(Γ,Z)

c×c //

τ0

55llllllll
JN0 × JN0

where we have identified JN0 = ĴN0 via the principal polarization. We have that τ0 is given by the

Deligne pairing [ABH02]. In a little more detail, recall that given degree 0 line bundles L1, L2 on

N0, and rational sections σ1 and σ2, respectively, with disjoints supports, the Deligne pairing gives

an element 〈σ1, σ2〉 ∈ (P−1
(L1,L2)). The Deligne pairing also only depends on the rational sections, up
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to scaling by a constant, so that it is actually defined on degree 0 divisors with disjoint supports.

See [§13.5][ACG11] for more discussion. Since the classifying map c is actually defined in terms of

degree 0 divisors, the Deligne pairing gives a lift as in the diagram above, so long as the supports

of the cycles are disjoint. To deal with the case where the supports are not disjoint, one does the

following. For each oriented edge ~e of Γ, one associates a rational section σ~e of ON0(t(~e) − s(~e)).

For distinct edges, one has the Deligne pairing 〈~e1, ~e2〉. One defines 〈~e,~e〉 arbitrarily. It is shown

in [§5.5][Ale04] that with this arbitrary choice, the lift we will define will agree with τ0, up to

an equivalence that does not affect the period map to the second Voronoi compactification (or,

therefore, the construction of Alexeev’s limit stable semi-abelic pair). Now one simply defines the

lift of a pair of cycles
∑
~ei and

∑ ~fi as the product of the associated elements 〈~ei, ~fj〉. This agrees

with the Deligne pairing, where both are defined.

13.5 Degenerations of Prym varieties

Let (C̃, ι) be a curve C̃ with an admissible involution ι : C̃ → C̃. Observe that we are

keeping the notation consistent with the rest of the paper. Define C = C̃/ 〈ι〉 with π : C̃ → C as

the quotient map which will be an étale double cover of C̃. Let Nm := (π∗ : JC̃ → JC) and define

P
C̃/C

:= ker(Nm : JC̃ → JC)0

that is, P
C̃/C

is the connected component of the kernel of the norm map containing the identity.

Alternatively we can define P
C̃/C

as,

P
C̃/C

= ker((1 + ι) : JC̃ → JC)0 = im((1− ι) : JC̃ → JC)

Given a family of curves with admissible involutions X → ∆ over the unit disk such that the

generic fiber (C̃0, ι) is a stable curve, the Prym variety associated to (C̃0, ι) can be described as the

limit of Prym varieties of étale double covers of smooth curves. In [§3.2][ABH02], the authors give

the combinatorial data required to classify the Prym variety for the generic fiber P
C̃0/C0

. We focus

on the following degeneration data:
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(PP0) The abelian variety P
Ñ0/N0

, which is called the compact part, where Ñ0 is the normalization

of the curve C̃0. This can be described by the extension,

0→ H1(Γ̃,Z)− ⊗ C∗ → P
C̃0/C0

→ P
Ñ0/N0

→ 0

where Γ̃ is the dual graph of C̃.

(PP1) The classifying map c[−] : H1(Γ̃,Z)[−] → P̂
Ñ0/N0

which is defined as: for any z ∈ H1(Γ̃,Z)[−]

one has 2z ∈ H1(Γ̃,Z)− ⊂ H1(Γ̃,Z) and we set c[−](z) = c(2z) where c comes from the

classifying map defined in 13.4.

(PP2) The lattice H1(Γ̃,Z)−; the torus H1(Γ,Z)−⊗C∗ ∼= (C∗)n, where n is the rank of H1(Γ,Z),

is called the non-compact part.

(PP3) The lift τ−0 : H1(Γ,Z)− × H1(Γ,Z)− → (P−1)∗ where P is the Poincaré bundle over

P
Ñ0/N0

× P̂
Ñ0/N0

.

The data (PP4)–(PP5) essentially plays an auxiliary role, and the data (PP6) can essentially

be determined by the monodromy cone, which we have discussed how to compute earlier. The

degeneration data (PP1) and (PP2) for the 2A1 cubic was considered in [Hav16]; in short, our

focus in this thesis is really on (PP3), which is obtained from restriction from the lift given by the

degeneration of the covering curves.

13.6 2A1 cubic threefold

Following the calculations of [§4.1.11][Hav16], if X has two nodes the plane quintic D has

two nodes, p and q. The double cover D̃ has four nodes p+, p−, q+, and q−. If Γ̃ is the dual graph



131

of D̃ then in [Hav16] the following was computed,

H1(Γ̃,Z) = Z
〈
e+, e−, f+, f−

〉
(13.6.1)

H1(Γ̃,Z)+ = Z
〈
e+ + e−, f+ + f−

〉
(13.6.2)

H1(Γ̃,Z)− = Z
〈
e+ − e−, f+ − f−

〉
(13.6.3)

H1(Γ̃,Z)[−] = Z
〈

1

2
(e+ − e−),

1

2
(f+ − f−)

〉
(13.6.4)

where e± corresponds to p± and f± corresponds to q±. The space H1(Γ̃,Z)− has rank 2 and thus

the non-compact torus H1(Γ̃,Z)− ⊗C∗ ∼= (C∗)2 has rank 2. The intermediate Jacobian is given by

0→ (C∗)2 → IJ(X)→ PNC̃/NC → 0

with extension data

g1 7→ OND̃(p+
2 − p

+
1 − p

−
2 + p−1 ) (13.6.5)

g2 7→ OND̃(q+
2 − q

+
1 − q

−
2 + q−1 ) (13.6.6)

In [§4.1.11][Hav16] it is shown that ND is genus 4 and it is not hyperelliptic. This suggest

that we may use theorem 13.3.2 which tells us that the Prym variety of ND is the Jacobian of NC

where C is the (2,3)-curve obtained from projection through one of the A1 singularities.

The complete intersection curve C has one node ξ which corresponds to the line in X passing

through both nodes. Assume C was obtained with a projection through the node corresponding

to p. We can get a g1
3 on ND by considering a pencil of lines through the node p and lifting it

to ND as a line through p will intersect D in three other points up to multiplicity. The line `′

going through both nodes p and q will correspond to q1 + q2 + r where q1 and q2 come from the

desingularization of q and r is the fifth point of intersection on D from `′. From the discussion of

the sketch of the proof of theorem 13.3.2 we know that triples of points in ND̃ correspond to points

on C and lift to points in NC. This gives us a way of expressing our extension data in terms of

points on the Jacobian of the normalization of C, J(NC). From the extension data in (13.6.5) we

get

q+
2 − q

+
1 − q

−
2 + q−1 = (q−1 + q+

2 + r̃)− (q+
1 + q−2 + r̃) = ξ1 − ξ2 ∈ J(NC).
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The point r̃ ∈ ND̃ is a point above r ∈ ND. The points ξ1 and ξ2 are obtained by the desingular-

ization of ξ. For the extension data in (13.6.6) we can look at the g1
3 divisors we get from pencils

of lines through q. This will give us

p+
2 − p

+
1 − p

−
2 + p−1 = (p−1 + p+

2 + s̃)− (p+
1 + p−2 + s̃) = η1 − η2 ∈ J(NC).

Here the s̃ ∈ ND̃ is a point above the point s ∈ ND which is the fifth point of intersection. The

points η1 and η2 are obtained by the desingularization of η ∈ C which is the node in C coming

from the line in X passing through the 2 nodes after projecting from the other node. From theorem

13.2.3, the intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ J(NC)→ 0

with classifying map given by the data:

g1 7→ ONC(η1 − η2) (13.6.7)

g2 7→ ONC(ξ1 − ξ2) (13.6.8)

where g1 and g2 are a choice of generators of the character lattice (which can be canonically identified

with H1(Γ̃,Z)−). So far this rehashes the results in [Hav16], and the data above corresponds to

(PP1), and (PP2). Tacitly, this essentially also computes (PP6). Here we want to explain (PP3).

From [ABH02], this is obtained from restriction from the Jacobian case; i.e., from considering the

degeneration of the Jacobian of the covering curves. Translating, through the trigonal construction,

we want a lift

(P−1)∗

��
H1(Γ,Z)− ×H1(Γ,Z)−

c×c //

τ0

55jjjjjjjj
JNC × JNC

Since again the classifying map is given by divisors, the Deligne pairing defines a lift, and tracing

through the definitions, this defines τ0.

We make one more observation here, which is that ξ1 = η1 and ξ2 = η2. This was overlooked

in [Hav16].
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We can also connect this to the work in [CMGHL17a, Thm. 7.2].

Corollary 13.6.1. In the notation of [CMGHL17a, Thm. 7.2], the dimension 8 stratum A11b in

the boundary of the intermediate Jacobian locus arises from degenerations to 2A1 cubics.

Technically this was already known in [CMGHL17a], but the arguments above provide a

direct argument via degenerations of Pryms.



Bibliography

[AB12] Valery Alexeev and Adrian Brunyate, Extending the Torelli map to toroidal
compactifications of Siegel space, Invent. Math. 188 (2012), no. 1, 175–196. MR
2897696

[ABH02] V. Alexeev, Ch. Birkenhake, and K. Hulek, Degenerations of Prym varieties, J. Reine
Angew. Math. 553 (2002), 73–116. MR 1944808

[ACG11] Enrico Arbarello, Maurizio Cornalba, and Pillip A. Griffiths, Geometry of algebraic
curves. Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011, With a
contribution by Joseph Daniel Harris. MR 2807457

[Ale04] Valery Alexeev, Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci.
40 (2004), no. 4, 1241–1265. MR 2105707
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