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NAME:

PRACTICE EXAM

SOLUTIONS

Question: 1 2 3 4 5 Total

Points: 20 20 20 20 20 100

Score:

• The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and

pen, to complete this exam.

• You may not discuss the exam with anyone except me, in any way, under any circumstances.

• You must explain your answers, and you will be graded on the clarity of your solutions.

• You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.

• You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your

exam to Canvas.



1. (20 points) • TRUE or FALSE:

If n ∈N, then (2n
n ) is even.

If true, give a direct proof of the statement. If false, provide a counter example, and prove that it is a

counter example. Your solution must start with the sentence, “This statement is TRUE,” or the sentence,

“This statement is FALSE.”

SOLUTION:

Solution. This statement is TRUE. Indeed, we have

(
2n
n

)
=

2n!
n!(2n− n)!

=
2n!
n!n!

=
(2n)(2n− 1)(2n− 2) · · · (n + 2)(n + 1)

n(n− 1)(n− 2) · · · 2 · 1

=
2n
n
· (2n− 1)(2n− 2) · · · (n + 2)(n + 1)

(n− 1)(n− 2) · · · 2 · 1

= 2 ·
(

2n− 1
n

)
,

which is even, since (2n−1
n ) is an integer.
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2. (20 points) • In class we showed that the equation x2 + y2 = 3 has no rational solutions. Use this fact

to give a proof by contradiction of the statement:

If k is an odd positive integer, then the equation x2 + y2 = 3k has no rational solutions.

SOLUTION:

Solution. Let k be an odd positive integer, and suppose for the sake of contradiction that there exists a

rational solution (x0, y0) ∈ Q2 to the equation x2 + y2 = 3k. In other words, we assume that there exist

rational numbers x0, y0 such that

x2
0 + y2

0 = 3k.

Since k is odd, we have that k = 2n + 1 for some non-negative integer n, and if we divide both sides of

the equation above by 32n, we obtain the equation

( x0

3n

)2
+
( y0

3n

)2
= 3.

Since x0/3n and y0/3n are rational numbers, the equation above would say that x0/3n and y0/3n give

a rational solution to the equation x2 + y2 = 3, which we know is impossible. Consequently, since we

have arrived at a contradiction, our assumption that there exists a rational solution (x0, y0) ∈ Q2 to the

equation x2 + y2 = 3k was false.

Therefore, if k is an odd positive integer, then the equation x2 + y2 = 3k has no rational solutions.
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3. (20 points) • For all real numbers a, b ∈ R, give a proof by induction that for each natural number n the

following statement is true:

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

You may use, without proof, the fact that ( n
k−1) + (n

k) = (n+1
k ).

SOLUTION:

Solution. For each natural number n we have the statement:

p(n) : (a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

We start with the case n = 1, and we check that p(1) is true:

1

∑
k=0

(
1
k

)
akb1−k = b + a = (a + b)1.

We now perform the inductive step. We assume that p(m) is true for all m ≤ n for some natural

number n ≥ 1. In other words, we assume that (a + b)m = ∑m
k=0 (

m
k )akbm−k for all m ≤ n for some

natural number n ≥ 1. We then use this to show that p(n + 1) is true:

(a + b)n+1 =
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.

Here is the computation:

(a+ b)n+1 = (a+ b)n(a+ b) =

(
n

∑
k=0

(
n
k

)
akbn−k

)
(a+ b) =

(
n

∑
k=0

(
n
k

)
ak+1bn−k

)
+

(
n

∑
k=0

(
n
k

)
akbn+1−k

)

=

(
n
0

)
bn+1 +

n

∑
k=1

((
n

k− 1

)
+

(
n
k

))
akbn+1−k +

(
n
n

)
an+1

=

(
n + 1

0

)
bn+1 +

n

∑
k=1

(
n + 1

k

)
akbn+1−k +

(
n + 1
n + 1

)
an+1 =

n+1

∑
k=0

(
n + 1

k

)
akbn+1−k,

where, for the second equality, we are using that p(n) is true. This completes the proof.
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Although this is not asked for in the problem, here is a proof of the fact that ( n
k−1) + (n

k) = (n+1
k ):

(
n

k− 1

)
+

(
n
k

)
=

n!
(n− k + 1)!(k− 1)!

+
n!

(n− k)!k!
=

n!k
(n− k + 1)!k!

+
n!(n− k + 1)
(n− k + 1)!k!

=
n!(k + n− k + 1)
(n + 1− k)!k!

=
(n + 1)!

(n + 1− k)!k!
=

(
n + 1

k

)
.
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4. (20 points) • Suppose R is an equivalence relation on a set A, with four equivalence classes. How many

different equivalence relations S on A are there for which R ⊆ S? You must prove that your answer is correct.

SOLUTION:

Solution. There are 15 different equivalence relations S on A for which R ⊆ S.

To see this, we will convert the question into a statement about partitions. Recall that, as an exercise

given in class on Monday March 14, we were asked to prove:

If R and S are equivalence relations on a set A, then R ⊆ S if and only if for all X ∈ PR there exists Y ∈ PS with

X ⊆ Y.

Here we are using the notation PR = A/R for the partition of A associated to the equivalence relation

R, which is by definition the set of equivalence classes of R, and similarly for S.

This means that R ⊆ S if and only if the partition PS is obtained from the partition PR by taking unions

of sets in PR. In our case we have an equivalence relation R on A that leads to a partition of A with four

nonempty sets, say

A = A1 t A2 t A3 t A4.

Each equivalence relation S on A with R ⊆ S corresponds to a partition of A obtained by taking unions

of some of the Ai. For instance, we could take the partition of A into the three sets (A1 ∪ A2), A3, and

A4. In total, all of the combinations give us

1 +
(

4
2

)
+

1
2

(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 1 + 6 + 3 + 4 + 1 = 15

distinct partitions. Indeed, we could simply leave the partition alone, keeping the partition with the

four sets A1, A2, A3, and A4. Or we could choose any two sets in the partition, and take their union;

this gives us (4
2) partitions with three sets. For instance, we could choose A1 and A2, and then arrive at

the partition of A into the three sets (A1 ∪ A2), A3, and A4. Alternatively, we could choose any two sets

in the partition, and take their union, and then also take the union of the other two sets; this gives us

1
2 (

4
2) partitions with two sets. For instance, we could choose A1 and A2, and then arrive at the partition

of A into the two sets (A1 ∪ A2) and (A3 ∪ A4). Note that this is the same partition we would obtain

if we had chosen A3 and A4. We can also choose any three sets and take their union; this gives us (4
3)

partitions with two sets. For instance, we could choose A1, A2, and A3, and arrive at the partition of A

into the two sets (A1 ∪ A2 ∪ A3) and A4. Or, finally, we could choose all four sets and take their union,

to gives us (4
4) partitions with one set; i.e., the partition of A into the one set (A1 ∪ A2 ∪ A3 ∪ A4).
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Another approach to this problem is to show that given a set A and an equivalence relation R on A,

then equivalence relations S on A with R ⊆ S correspond to equivalence relations on A/R. Since in

our problem A/R has four elements, we are then asking for the number of equivalence relations on a

set with four elements. The argument above shows that there are 15 equivalence relations on a set with

four elements.

Here is a solution to the exercise mentioned above, to show that:

If R and S are equivalence relations on a set A, then R ⊆ S if and only if for all X ∈ PR there exists Y ∈ PS with

X ⊆ Y.

First assume that R ⊆ S, and let X ∈ PR. Then by definition, there exists a ∈ A such that X is the

equivalence class of a for R; i.e., X = [a]R = {x ∈ A : x ∼R a} = {x ∈ A : (x, a) ∈ R}. At the same

time, we have

X = [a]R = {x ∈ A : x ∼R a} = {x ∈ A : (x, a) ∈ R} ⊆ {x ∈ A : (x, a) ∈ S} = [x]S ∈ PS,

completing the proof that there exists Y ∈ PS with X ⊆ Y.

Conversely, assume that for all X ∈ PR there exists Y ∈ PS with X ⊆ Y. We want to show that R ⊆ S.

So let (a, b) ∈ R. Then we have [a]R ∈ PR, and we have by assumption Y ∈ PS such that [a]R ⊆ Y.

Since a ∼R b, we have a, b ∈ [a]R ⊆ Y, so that a, b ∈ Y. By definition, there exists c ∈ A such that

[Y] = [c]S = {x ∈ A : x ∼S c}. Thus we have a ∼S c and b ∼S c, so that a ∼S b, by symmetry and

transitivity. In other words, (a, b) ∈ S, completing the proof.
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5. • TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.

(a) (4 points) TRUE or FALSE (circle one). The LATEX code

x^100+3\pi x^2+5

produces the following:

x100 + 3πx2 + 5

SOLUTION: FALSE. It produces: x100 + 3πx2 + 5. One needs to use

x^{100}

(b) (4 points) TRUE or FALSE (circle one). If R and S are equivalence relations on a set A, then R ∩ S

is also an equivalence relation on A.

SOLUTION: TRUE. I leave this to you as an exercise to check that R ∩ S is reflexive, symmetric,

and transitive.

(c) (4 points) TRUE or FALSE (circle one). The empty set defines a reflexive relation on any set.

SOLUTION: FALSE. If the set A is not the empty set, then the empty set ∅ ⊆ A× A is not reflexive

since for any a ∈ A, we have (a, a) /∈ ∅.

(d) (4 points) TRUE or FALSE (circle one). If ∼ is an equivalence relation on a set A and a ∈ A, then

the equivalence class of a is the set [a] = {x ∈ A : ∃y ∈ A, x ∼ y}.

SOLUTION: FALSE. [a] = {x ∈ A : x ∼ a}, while {x ∈ A : ∃y ∈ A, x ∼ y} = A. For a counter

example to the statement, i.e., an example where [a] 6= {x ∈ A : ∃y ∈ A, x ∼ y} = A, take

equivalence modulo 2 on the integers, and note that [0] = {2n : n ∈ Z} 6= {x ∈ Z : ∃y ∈ Z, x ∼

y} = Z.

(e) (4 points) TRUE or FALSE (circle one). If ∼ is an equivalence relation on a set A then the set of

equivalence classes A/ ∼ is a partition of the set A.

SOLUTION: TRUE. We explained this in class.
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