Midterm 2

Abstract Algebra 1
MATH 3140
Fall 2022
Friday October 28, 2022

UPLOAD THIS COVER SHEET!

NAME: \qquad

PRACTICE EXAM

| Question: | $\mathbf{1}$ | 2 | 3 | 4 | 5 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 20 | 20 | 20 | 20 | 20 | 100 |
| Score: | | | | | | |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. (a) (5 points) • Is the permutation $\sigma=(1,6,4)(2,5) \in S_{6}$ even or odd?
(b) (5 points) Is the permutation σ^{2} even or odd?
(c) (5 points) Compute $|\sigma|$; i.e., the order of the element σ in the group S_{6}.
(d) (5 points) With σ as above and $\tau=(5,3,2)$, compute $\sigma \tau$ (as a product of disjoint cycles).

1

20 points
2. - Consider the dihedral group D_{n}, with $n \geq 3$. Recall the notation we have been using: D_{n} has identity element I, and is generated by elements R and D, satisfying the relations $R^{n}=D^{2}=I$ and $R D=D R^{-1}$. Consider the cyclic subgroup $\left\langle R^{2}\right\rangle$.
(a) (10 points) Show that $\left\langle R^{2}\right\rangle$ is a normal subgroup of D_{n}.
(b) (10 points) Find the order of the group $D_{n} /\left\langle R^{2}\right\rangle$. [Hint: this may depend on the parity of n.]
3. - Recall that for a commutative ring R with unity $1 \neq 0$, we define $R[x]$ to be the ring of polynomials in x with coefficients in R. Consider the map

$$
\begin{gathered}
\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_{4}[x] \\
\sum_{k=0}^{n} a_{k} x^{k} \mapsto \sum_{k=0}^{n}\left[a_{k}\right] x^{k}
\end{gathered}
$$

where $\left[a_{k}\right]=a_{k}(\bmod 4)$.
(a) (10 points) Show that ϕ is a homomorphism of rings.
(b) (10 points) Describe the kernel of ϕ. (Do not just write down the definition; you need to describe an explicit subset of $\mathbb{Z}[x]$.)
4. (20 points) • In a commutative ring with unity, show that $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.
5. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (4 points) TRUE or FALSE (circle one). The order of an element of a finite group divides the order of the group.
(b) (4 points) TRUE or FALSE (circle one). The symmetric group S_{n} is not cyclic for any $n \geq 1$.
(c) (4 points) TRUE or FALSE (circle one). Every abelian group of order divisible by 5 contains a cyclic subgroup of order 5.
(d) (4 points) TRUE or FALSE (circle one). Every quotient group ("factor group") of a cyclic group is cyclic.
(e) (4 points) TRUE or FALSE (circle one). If F is a field, and R is a subring of F with unity 1_{R} in R equal to unity 1_{F} in F, then R is a field.

