Midterm 2

Abstract Algebra 1

MATH 3140

Fall 2022

Friday October 28, 2022

UPLOAD THIS COVER SHEET!

NAME:

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. (a) (5 points) • *Is the permutation* $\sigma = (1, 6, 4)(2, 5) \in S_6$ *even or odd?*

(b) (5 points) *Is the permutation* σ^2 *even or odd?*

(c) (5 points) *Compute* $|\sigma|$; i.e., the order of the element σ in the group S_6 .

(d) (5 points) With σ as above and $\tau = (5,3,2)$, compute $\sigma\tau$ (as a product of disjoint cycles).

1	
20 points	-

- 2. Consider the dihedral group D_n , with $n \ge 3$. Recall the notation we have been using: D_n has identity element *I*, and is generated by elements *R* and *D*, satisfying the relations $R^n = D^2 = I$ and $RD = DR^{-1}$. Consider the cyclic subgroup $\langle R^2 \rangle$.
 - (a) (10 points) Show that $\langle R^2 \rangle$ is a normal subgroup of D_n .

(b) (10 points) *Find the order of the group* $D_n/\langle R^2 \rangle$. [*Hint:* this may depend on the parity of *n*.]

2	
20 points	

3. • Recall that for a commutative ring *R* with unity 1 ≠ 0, we define *R*[*x*] to be the ring of polynomials in *x* with coefficients in *R*. Consider the map

$$\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_4[x]$$
$$\sum_{k=0}^n a_k x^k \mapsto \sum_{k=0}^n [a_k] x^k,$$

where $[a_k] = a_k \pmod{4}$.

(a) (10 points) Show that ϕ is a homomorphism of rings.

(b) (10 points) *Describe the kernel of φ*. (Do not just write down the definition; you need to describe an explicit subset of Z[x].)

3	
20 points	

4. (20 points) • In a commutative ring with unity, show that $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

4 20 points

- 5. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (4 points) **TRUE** or **FALSE** (circle one). The order of an element of a finite group divides the order of the group.
 - (b) (4 points) **TRUE** or **FALSE** (circle one). The symmetric group S_n is not cyclic for any $n \ge 1$.
 - (c) (4 points) **TRUE** or **FALSE** (circle one). Every abelian group of order divisible by 5 contains a cyclic subgroup of order 5.
 - (d) (4 points) TRUE or FALSE (circle one). Every quotient group ("factor group") of a cyclic group is cyclic.
 - (e) (4 points) **TRUE** or **FALSE** (circle one). If *F* is a field, and *R* is a subring of *F* with unity 1_R in *R* equal to unity 1_F in *F*, then *R* is a field.

5	
20 points	