Midterm 1

Abstract Algebra 1 MATH 3140 Fall 2022

Friday September 23, 2022

NAME: _____

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. • Consider the following subset of real 2×2 matrices:

$$H:=\left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right): a \in \mathbb{R} \right\} \subseteq \mathrm{M}_{2}(\mathbb{R}).$$

(a) (10 points) Show that matrix multiplication defines a binary operation on H.

(b) (10 points) *Does the map* (or "function") $\phi : H \to \mathbb{R}$, given by

$$\phi\left(\left(\begin{array}{cc}1&a\\0&1\end{array}\right)\right)=a,$$

give an isomorphism of the binary structure $\langle H, \cdot \rangle$ (here \cdot denotes matrix multiplication) with the binary structure $\langle \mathbb{R}, + \rangle$? Explain.

1
20 points

- **2.** (20 points) Suppose that $\langle G, * \rangle$ is a binary structure such that:
 - 1. The binary operation * is associative.
 - 2. There exists a **left** identity element; i.e., there exists $e \in G$ such that for all $g \in G$, we have e * g = g.
 - 3. Left inverses exist; i.e., for all $g \in G$, there exists $g^{-1} \in G$ such that $g^{-1} * g = e$.

Show that $\langle G, * \rangle$ is a group.

2
20 points

3. (20 points) • Let *H* be a subgroup of a group *G*. For $a, b \in G$, let $a \sim b$ if and only if $a^{-1}b \in H$. Show that \sim is an equivalence relation on *G*.

3
10 points

4. (a) (10 points) • In the group \mathbb{Z}_{28} , what is the order of the subgroup generated by the element 18?

(b) (10 points) *How many generators are there for the group* \mathbb{Z}_{28} ?

4	
20 points	

- 5. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (4 points) TRUE or FALSE (circle one). Every subgroup of a cyclic group is cyclic.
 - (b) (4 points) TRUE or FALSE (circle one). If *H* and *H'* are subgroups of a group *G*, then *H* ∩ *H'* is a subgroup of *G*.
 - (c) (4 points) **TRUE** or **FALSE** (circle one). If * is an associative binary operation on a set *S*, then for all $a, b, c \in S$, we have (a * b) * c = c * (a * b).
 - (d) (4 points) **TRUE** or **FALSE** (circle one). Every finite group of at most 3 elements is abelian.
 - (e) (4 points) TRUE or FALSE (circle one). Every subgroup of an infinite group is infinite.

5
20 points