Midterm 1

Abstract Algebra 1

MATH 3140
Fall 2022
Friday September 23, 2022

NAME: \qquad

PRACTICE EXAM

Question:	$\mathbf{1}$	$[2$	3	4	4	5	Total
Points:	20	20	20	20	20	100	
Score:							

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. - Consider the following subset of real 2×2 matrices:

$$
H:=\left\{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right): a \in \mathbb{R}\right\} \subseteq \mathrm{M}_{2}(\mathbb{R}) .
$$

(a) (10 points) Show that matrix multiplication defines a binary operation on H .
(b) (10 points) Does the map (or "function") $\phi: H \rightarrow \mathbb{R}$, given by

$$
\phi\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\right)=a,
$$

give an isomorphism of the binary structure $\langle H, \cdot\rangle$ (here \cdot denotes matrix multiplication) with the binary structure $\langle\mathbb{R},+\rangle$? Explain.

1
20 points

2. (20 points) • Suppose that $\langle G, *\rangle$ is a binary structure such that:
3. The binary operation $*$ is associative.
4. There exists a left identity element; i.e., there exists $e \in G$ such that for all $g \in G$, we have $e * g=g$.
5. Left inverses exist; i.e., for all $g \in G$, there exists $g^{-1} \in G$ such that $g^{-1} * g=e$.

Show that $\langle G, *\rangle$ is a group.

2

20 points
3. (20 points) • Let H be a subgroup of a group G. For $a, b \in G$, let $a \sim b$ if and only if $a^{-1} b \in H$. Show that \sim is an equivalence relation on G.
4. (a) (10 points) • In the group \mathbb{Z}_{28}, what is the order of the subgroup generated by the element 18 ?
(b) (10 points) How many generators are there for the group \mathbb{Z}_{28} ?
5. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (4 points) TRUE or FALSE (circle one). Every subgroup of a cyclic group is cyclic.
(b) (4 points) TRUE or FALSE (circle one). If H and H^{\prime} are subgroups of a group G, then $H \cap H^{\prime}$ is a subgroup of G.
(c) (4 points) TRUE or FALSE (circle one). If $*$ is an associative binary operation on a set S, then for all $a, b, c \in S$, we have $(a * b) * c=c *(a * b)$.
(d) (4 points) TRUE or FALSE (circle one). Every finite group of at most 3 elements is abelian.
(e) (4 points) TRUE or FALSE (circle one). Every subgroup of an infinite group is infinite.

