Final Exam

Abstract Algebra 1

MATH 3140
Fall 2022
Sunday December 11, 2022
UPLOAD THIS COVER SHEET!

NAME: \qquad

PRACTICE EXAM

Question:	$\boxed{1}$	$[\mathbf{2}$	$[\mathbf{3}$	$\boxed{4}$		5	$\boxed{5}$	Total
Points:	20	20	20	20	20	20	120	
Score:								

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 70 minutes to complete the exam.

1. (20 points) - Show that for a prime p, the polynomial $x^{p}+a \in \mathbb{Z}_{p}[x]$ is not irreducible for any $a \in \mathbb{Z}_{p}$.
2. - This problem concerns finite groups of units in commutative rings with $1 \neq 0$.
(a) (10 points) Show that any finite group of units in an integral domain is cyclic.
[Hint: Use what you know about finite groups of units in a field.]
(b) (10 points) What if R is any commutative ring with $1 \neq 0$? Is it still true that any finite group of units in R is cyclic?
[Hint: Consider the ring $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.]
3. - Let R and S be commutative rings with $1 \neq 0$. In this problem we will show that for any ideal $I \subseteq R \times S$, there are ideals $I_{R} \subseteq R$ and $I_{S} \subseteq S$ such that $I=I_{R} \times I_{S}$, and moreover, we will show that $(R \times S) / I \cong\left(R / I_{R}\right) \times\left(S / I_{S}\right)$.
(a) (2 points) If $\phi: R \rightarrow S$ is a homomorphism and $I_{R} \subseteq R$ is an ideal, show by example that $\phi\left(I_{R}\right)$ need not be an ideal of S.
(b) (3 points) If $\phi: R \rightarrow S$ is a surjective homomorphism and $I_{R} \subseteq R$ is an ideal, show that $\phi\left(I_{R}\right)$ is an ideal of S.
(c) (3 points) The first projection map $\pi_{1}: R \times S \rightarrow R, \pi_{1}(r, s)=r$, is a homomorphism of rings. If $I \subseteq R \times S$ is an ideal, show that $I_{R}:=\pi_{1}(I)$ is an ideal of R. Similarly, the second projection map $\pi_{2}: R \times S \rightarrow S, \pi_{1}(r, s)=s$, is a homomorphism of rings. If $I \subseteq R \times S$ is an ideal, show that $I_{S}:=\pi_{2}(I)$ is an ideal of S.
(d) (3 points) If $I_{R} \subseteq R$ and $I_{S} \subseteq S$ are ideals, show that $I_{R} \times I_{S}$ is an ideal in $R \times S$.
(e) (3 points) If I is an ideal in $R \times S$ and we set $I_{R}:=\pi_{1}(I)$ and $I_{S}:=\pi_{2}(I)$, show that $I \subseteq I_{R} \times I_{S}$.
(f) (3 points) If I is an ideal in $R \times S$ and we set $I_{R}:=\pi_{1}(I)$ and $I_{S}:=\pi_{2}(I)$, show that $I=I_{R} \times I_{S}$. [Hint: use that R and S have $1 \neq 0$, and consider $(1,0) I$ and $(0,1) I$ to show that $I \supseteq I_{R} \times I_{S}$.]
(g) (3 points) In the notation of the previous problem, show there is an isomorphism

$$
(R \times S) / I \cong\left(R / I_{R}\right) \times\left(S / I_{S}\right)
$$

[Hint: Define a homomorphism $\phi: R \times S \rightarrow\left(R / I_{R}\right) \times\left(S / I_{S}\right)$.]
4. (20 points) - Find the degree and a basis for the field extension $Q(\sqrt{2}, \sqrt{3})$ over Q.
[Hint: Find a basis for $\mathbf{Q}(\sqrt{2})$ over \mathbf{Q}, and then find a basis for $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbf{Q}(\sqrt{2})$.]
5. (20 points) - Show that if F, E, and K are fields with $F \leq E \leq K$, then K is algebraic over F if and only if K is algebraic over E, and E is algebraic over F. (You must not assume the extensions are finite.)
6. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (4 points) TRUE or FALSE (circle one). There exists a commutative ring with unity that has nonzero zero divisors, and has a quotient ring ("factor ring") that is an integral domain.
(b) (4 points) TRUE or FALSE (circle one). If F is a field and $\phi: F \rightarrow F$ is a ring isomorphism, then ϕ is equal to the identity.
(c) (4 points) TRUE or FALSE (circle one). An integral domain of characteristic 0 is infinite.
(d) (4 points) TRUE or FALSE (circle one). The remainder of 7^{122} when divided by 11 is 5 .
(e) (4 points) TRUE or FALSE (circle one). If R is a commutative ring with $1 \neq 0$, and $f(x), g(x) \in R[x]$ are polynomials of degree two and three respectively, then the degree of $f(x) g(x)$ is five.

