Final Exam

Abstract Algebra 1

MATH 3140

Fall 2022

Sunday December 11, 2022

UPLOAD THIS COVER SHEET!

NAME:

PRACTICE EXAM

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	20	20	120
Score:							

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 70 minutes to complete the exam.

1. (20 points) • Show that for a prime p, the polynomial $x^p + a \in \mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.

- **2.** This problem concerns finite groups of units in commutative rings with $1 \neq 0$.
 - (a) (10 points) *Show that any finite group of units in an integral domain is cyclic.*[*Hint*: Use what you know about finite groups of units in a field.]

(b) (10 points) What if R is any commutative ring with $1 \neq 0$? Is it still true that any finite group of units in R is cyclic?

[*Hint*: Consider the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$.]

- **3.** Let *R* and *S* be commutative rings with $1 \neq 0$. In this problem we will show that for any ideal $I \subseteq R \times S$, there are ideals $I_R \subseteq R$ and $I_S \subseteq S$ such that $I = I_R \times I_S$, and moreover, we will show that $(R \times S)/I \cong (R/I_R) \times (S/I_S)$.
 - (a) (2 points) If $\phi : R \to S$ is a homomorphism and $I_R \subseteq R$ is an ideal, show by example that $\phi(I_R)$ need not be an ideal of S.

(b) (3 points) If $\phi : R \to S$ is a surjective homomorphism and $I_R \subseteq R$ is an ideal, show that $\phi(I_R)$ is an ideal of *S*.

(c) (3 points) The first projection map $\pi_1 : R \times S \to R$, $\pi_1(r,s) = r$, is a homomorphism of rings. If $I \subseteq R \times S$ is an ideal, show that $I_R := \pi_1(I)$ is an ideal of R. Similarly, the second projection map $\pi_2 : R \times S \to S$, $\pi_1(r,s) = s$, is a homomorphism of rings. If $I \subseteq R \times S$ is an ideal, show that $I_S := \pi_2(I)$ is an ideal of S.

(d) (3 points) If $I_R \subseteq R$ and $I_S \subseteq S$ are ideals, show that $I_R \times I_S$ is an ideal in $R \times S$.

(e) (3 points) If I is an ideal in $R \times S$ and we set $I_R := \pi_1(I)$ and $I_S := \pi_2(I)$, show that $I \subseteq I_R \times I_S$.

(f) (3 points) If *I* is an ideal in $R \times S$ and we set $I_R := \pi_1(I)$ and $I_S := \pi_2(I)$, show that $I = I_R \times I_S$. [*Hint:* use that *R* and *S* have $1 \neq 0$, and consider (1,0)I and (0,1)I to show that $I \supseteq I_R \times I_S$.]

(g) (3 points) In the notation of the previous problem, show there is an isomorphism

$$(R \times S)/I \cong (R/I_R) \times (S/I_S).$$

[*Hint*: Define a homomorphism ϕ : $R \times S \rightarrow (R/I_R) \times (S/I_S)$.]

4. (20 points) • *Find the degree and a basis for the field extension* $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ *over* \mathbb{Q} .

[*Hint*: Find a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} , and then find a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over $\mathbb{Q}(\sqrt{2})$.]

5. (20 points) • Show that if F, E, and K are fields with $F \le E \le K$, then K is algebraic over F if and only if K is algebraic over E, and E is algebraic over F. (You must not assume the extensions are finite.)

- 6. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (4 points) **TRUE** or **FALSE** (circle one). There exists a commutative ring with unity that has nonzero zero divisors, and has a quotient ring ("factor ring") that is an integral domain.

(b) (4 points) **TRUE** or **FALSE** (circle one). If *F* is a field and $\phi : F \to F$ is a ring isomorphism, then ϕ is equal to the identity.

(c) (4 points) TRUE or FALSE (circle one). An integral domain of characteristic 0 is infinite.

(d) (4 points) **TRUE** or **FALSE** (circle one). The remainder of 7^{122} when divided by 11 is 5.

(e) (4 points) **TRUE** or **FALSE** (circle one). If *R* is a commutative ring with $1 \neq 0$, and $f(x), g(x) \in R[x]$ are polynomials of degree two and three respectively, then the degree of f(x)g(x) is five.