Exercise 27.24

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

Abstract. This is Exercise 27.24 from Fraleigh [Fra03, §27]:

Exercise 27.24. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.

Solution. Let R be a finite commutative ring with unity 1 . If $1=0$, then $R=\{0\}$, and so R contains no ideals I properly contained in R, and therefore R contains no prime ideals. Therefore, trivially, we have that every prime ideal in R is maximal, since this is a vacuous statement.

So, assume now that $1 \neq 0$. If $\mathfrak{p} \subseteq R$ is a prime ideal in R, then from [Fra03, Theorem 27.16] we have that the quotient ring ("factor ring") R / \mathfrak{p} is an integral domain. Since R is finite, and there is a surjective ("onto") ring homomorphism $R \rightarrow R / \mathfrak{p}$, it follows that R / \mathfrak{p} is finite. In other words, R / \mathfrak{p} is a finite integral domain. From [Fra03, Theorem 19.11], any finite integral domain is a field, and so we have that R / \mathfrak{p} is a field. Finally, from [Fra03, Theorem 27.9], since R / \mathfrak{p} is a field, it follows that \mathfrak{p} is a maximal ideal. Thus every prime ideal in R is a maximal ideal.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

