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1. (20 points) e Let x; = , Xy = , X3 = ,and x4 =

0 1 1 0

1 0 1 0

Use the Gram—Schmidt process to find an orthonormal basis for the vector subspace of R* spanned by the vectors

X1, X2, X3, and xy.
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2. (20 points) e Let IP3 be the real vector space of polynomials of degree at most 3 (my notation for this
vector space has been R[t]3, but here I am using the textbook’s notation). A basis of IP3 is given by the

polynomials 1, ¢, £2,13.

We have seen that there is an inner product on IP3 given by evaluation at —2, —1, 1, and 2. In other

words, given polynomials p(t),q(t) € IP3, we define the inner product by the rule

Let p1(t) = t,and po(t) = t2.
Find the best approximation to p(t) = t3 by the polynomials in Span{p1(t), p2(t)}.

In other words, find the polynomial q(t) in the span of p;(¢) and py(t), that is closest to the polynomial

p(t) with respect to the given inner product on IP3.
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3. (20 points) e Find the equation y = By + B, x of the line that best fits the given data points, as a least squares
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4. o Consider the following real matrix

3 -1
A=| -1 s
1 -1

(a) (4 points) Find the characteristic polynomial p A(t) of A.
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(b) (4 points) Find the eigenvalues of A.

(c) (4 points) Find a basis for each eigenspace of A in R3.
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(d) (4 points) Is A diagonalizable? If so, find a matrix S € Mjsy3(R) so that S~ AS is diagonal. If not,

explain.

(e) (4 points) Is A diagonalizable with orthogonal matrices? If so, find an orthogonal matrix U € M3, 3(R)
so that UT AU is diagonal. If not, explain.
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5. (20 points) e Maximize the quadratic form
Q(x1, X2, x3) = 3x3 — 2x1 %2 + 2x1 %3 + 5x5 — 2xx3 + 313

subject to the constraint that x? + x3 + x5 = 1. [Hint: Compare to the matrix in Problem 3.]
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6. (20 points) e Find a singular value decomposition (SVD) of the matrix A =
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7. @ TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (2 points) TRUE or FALSE (circle one). If x,y € R”, then |x.y| < ||x]|||y]|-
(b) (2 points) TRUE or FALSE (circle one). Two vectors in IR" are orthogonal if their dot product is zero.

(c) (2 points) TRUE or FALSE (circle one). If W C R" is a vector subspace and W+ is the orthogonal

complement, then W C wt,

d) (2 points) TRUE or FALSE (circle one). If A € My« (R) and b € R™, then a least squares solution to
P q

the equation Ax = b is a vector X € R" such that AT Ax = ATb.

(e) (2 points) TRUE or FALSE (circle one). For the real vector space C°([0,1]) consisting of continuous

functions f : [0,1] — R on the closed interval [0, 1], the rule

1
(F(,80) = [ f(B)g(t) e

defines an inner product on C°([0,1]).

(f) (2 points) TRUE or FALSE (circle one). If A is any real matrix, then the matrix AT A has non-negative

eigenvalues.

(g) (2 points) TRUE or FALSE (circle one). Every real square matrix is diagonalizable with orthogonal

matrices.

(h) (2 points) TRUE or FALSE (circle one). Given symmetric matrices A and B of the same size, then AB is

a symmetric matrix.
(i) (2 points) TRUE or FALSE (circle one). Every quadratic form has a maximum value.

() 2 points) TRUE or FALSE (circle one). Let x,y € IR". Then the angle 0 between x and y satisfies
X.y

cosf = .
1x[{yl
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