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Given a system of equations, there is a row reduction algorithm to
solve the system of equations.
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3x1 + 9x2 + 27x3 = −3
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equations

We know that the first step in solving the system of equations is
to consider the associated augmented matrix.

Here again is the system of equations.

3x1 + 9x2 + 27x3 = −3
−3x1 − 11x2 − 35x3 = 5

2x1 + 8x2 + 26x3 = −4

And here is the associated augmented matrix:

 3 9 27 −3
−3 −11 −35 5

2 8 26 −4
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Putting left hand side of the augmented matrix
in RREF

In other words, the matrix we obtain by putting the left hand side
of the augmented matrix

 3 9 27 −3
−3 −11 −35 5

2 8 26 −4


in RREF is

 1 0 −3 2
0 1 4 −1
0 0 0 0


Since the system of equations is consistent (there are no rows that
are zero on the left hand side and non-zero on the right), we can
try to find all of the solutions to the system of equations.
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Modifying the matrix

Since the system of equations is consistent, the next step is to add
rows to the matrix subject to the following rules:

I We may only add rows that are zero except for one entry,
which is a −1. For instance,[

−1 0 0 . . . 0
]

or [
0 −1 0 . . . 0

]
or [

0 0 0 . . . −1
]

I We add such rows until the left hand side of our matrix is a
square matrix with only 1 or −1 entries on the diagonal.
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Modifying the matrix in our example

Recall that the matrix we obtained by putting the left hand side of
the augmented matrix

 3 9 27 −3
−3 −11 −35 5

2 8 26 −4


in RREF was

 1 0 −3 2
0 1 4 −1
0 0 0 0


The left hand side of the matrix is square, but it does not have
only 1 and −1 on the diagonal.
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Modifying the matrix in our example

To fix this problem  1○ 0 −3 2
0 1○ 4 −1
0 0 0○ 0



we add rows that are zero except for one entry, which is a −1,
until the left hand side of our matrix is a square matrix with only 1
or −1 entries on the diagonal. 1○ 0 −3 2

0 1○ 4 −1
0 0 -1○ 0
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The matrix we obtain is called the modified matrix: 1○ 0 −3 2
0 1○ 4 −1
0 0 -1○ 0



The solutions to our system of equations are determined by certain
columns of the modified matrix.
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Assuming the system of equations has a solution (i.e., it is
consistent),

then the solutions are determined by the last column
(green column):  1○ 0 −3 2

0 1○ 4 −1
0 0 -1○ 0


as well as the columns with the red −1 entries (orange column): 1○ 0 −3 2

0 1○ 4 −1
0 0 -1○ 0


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consistent), then the solutions are determined by the last column
(green column):  1○ 0 −3 2

0 1○ 4 −1
0 0 -1○ 0



as well as the columns with the red −1 entries (orange column): 1○ 0 −3 2
0 1○ 4 −1
0 0 -1○ 0
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Having identified the pertinent columns: 1○ 0 −3 2
0 1○ 4 −1
0 0 -1○ 0



the solutions are given by x1
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 =

 −3
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Explaining why this works in our example

Recall that in our example, the matrix we obtained by putting the
left hand side of our augmented matrix in RREF was: 1 0 −3 2

0 1 4 −1
0 0 0 0



This corresponds to the system of equations:

x1 − 3x3 = 2
x2 + 4x3 = −1

Clearly x3 is free, x2 = −4x3 − 1, and x1 = 3x3 + 2. We can also
write this as x1

x2
x3

 =

 3
−4

1

 x3 +

 2
−1

0

 , x3 ∈ R
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So we have our solutions as: x1
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 =

 −3
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Clearly we go back and forth by setting t = −x3, so both
approaches gave the same solutions.
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Let’s think a little more about why both approaches give the same
solutions.

Going back to our system of equations

x1 − 3x3 = 2
x2 + 4x3 = −1

we can try to think about the solutions as follows. We can rewrite
them as

x1 = 3x3 + 2
x2 = −4x3 − 1

and then write
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x3 = x3 + 0
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Another example

Explaining why this works in our example

Given our solution: x1
x2
x3

 =

 3
−4

1

 x3 +

 2
−1

0

 , x3 ∈ R

again we can set t = −x3, x1
x2
x3

 =

 −3
4
−1

 t +

 2
−1

0

 , t ∈ R

hopefully giving a sense of why the two approaches give the same
solutions. The benefit of the latter is that considering our RREF
matrix and modified matrix: 1 0 −3 2

0 1 4 −1
0 0 0 0

  1○ 0 −3 2
0 1○ 4 −1
0 0 -1○ 0


we see the vectors in the second solution a little more easily.
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
we see the vectors in the second solution a little more easily.
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A few comments

Clearly there is an easily identified matrix algorithm to give the
solution:  x1
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x3

 =

 3
−4

1

 x3 +

 2
−1

0

 , x3 ∈ R

but this would include multiplying matrix entries by −1 and would
therefore include extra steps.

Also, from the solution x1
x2
x3

 =

 −3
4

-1○

 t +
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−1

0

 , t ∈ R

the circled (red) −1 entries tell you what the free variables are, so
you can easily give the former solution from the latter.
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Another example

Example 2
Here is another example to give the idea.

Suppose we are given the system of equations:

x2 − 2x4 − x6 = 3
x3 + 3x4 + 5x6 = 4

x5 + 2x6 = 7

Then the associated augmented matrix is 0 1 0 −2 0 −1 3
0 0 1 3 0 5 4
0 0 0 0 1 2 7


which is already in RREF.
The modified matrix is

−1 0 0 0 0 0 0
0 1 0 −2 0 −1 3
0 0 1 3 0 5 4
0 0 0 −1 0 0 0
0 0 0 0 1 2 7
0 0 0 0 0 −1 0


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Another example

Example 2

We can now write down all of the solutions.

Recall that the modified matrix is
−1 0 0 0 0 0 0

0 1 0 −2 0 −1 3
0 0 1 3 0 5 4
0 0 0 −1 0 0 0
0 0 0 0 1 2 7
0 0 0 0 0 −1 0


and so the solutions are

x1
x2
x3
x4
x5
x6

 =


−1

0
0
0
0
0

 t1 +


0
−2

3
−1

0
0

 t2 +


0
−1

5
0
2
−1

 t3 +


0
3
4
0
7
0


t1, t2, t3 ∈ R.
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We can convert the solutions if we want as follows. Our original
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
t1, t2, t3 ∈ R.

We replace t1 7→ −x1, t2 7→ −x4, t3 7→ −x6, and we get
x1
x2
x3
x4
x5
x6

 =
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1
0
0
0
0
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 x1 +


0
2
−3

1
0
0

 x4 +


0
1
−5

0
−2

1

 x6 +
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