Exercise 6.2.26

Linear Algebra
 MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 6.2.26 from Lay [LLM16, §6.2]:

Exercise 6.2.26. Suppose W is a subspace of \mathbb{R}^{n} spanned by n nonzero orthogonal vectors. Explain why $W=\mathbb{R}^{n}$.

Solution. By [LLM16, Thm. 4, p.340], the given n nonzero orthogonal vectors in W are linearly independent. Since these n vectors are also assumed to span W, they form a basis of W. This means that W is a subspace of \mathbb{R}^{n} of dimension n and, therefore, is equal to \mathbb{R}^{n}.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

