
MATH4450: HOMEWORK 10
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Abstract. These notes discuss properties of uniformly conver-
gent sequences of functions.

1. Exercises

Recall the following definition

Definition 1.1. A sequence of functions fn : S → R with S ⊆ R and
n ∈ N, converges uniformly to a function f : S → R if for any ε > 0,
there exists a number N such that

|f(x)− fn(x)| < ε

for all n > N , and all x ∈ S. We often write fn → f uniformly on S.

There is the following lemma:

Lemma 1.2. Let fn : [a, b]→ R be sequence of continuous functions on
a closed interval. If fn → f uniformly on [a, b], then f is continuous.

Exercise 1. Prove the previous lemma.

Proof. Fix α ∈ [a, b]. We must show

lim
x→α

f(x) = f(α).

In other words, given ε > 0, we must show there exists a δ > 0 such
that

|f(α)− f(x)| < ε

whenever |α− x| < δ.
First fix n > 0 such that |f(x) − fn(x)| < ε/3, for all x ∈ [a, b];

this is possible due to the uniform convergence of the sequence. On
the other hand, since fn is continuous, there exists a δ > 0 such that
|fn(α)− fn(x)| < ε/3 whenever |α− x| < δ. It follows that

|f(α)− f(x)| = |f(α)− fn(α) + fn(α)− fn(x) + fn(x)− f(x)|
≤ |f(α)− f(x)|+ |fn(α)− fn(x)|+ |fn(x)− f(x)|

<
ε

3
+
ε

3
+
ε

3
,

whenever |α− x| < δ. �
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This allows us to prove the following theorem

Theorem 1.3. Let fn : [a, b]→ R be sequence of continuous functions
on a closed interval converging uniformly to f . Then

lim
n→∞

∫ b

a

fn(t)dt =

∫ b

a

f(t)dt.

Exercise 2. Prove the previous theorem.

Proof. Fix ε > 0. Due to the uniform convergence, there exists N such
that |f(t)−fn(t)| < ε/(b−a) for all n > N , and all t ∈ [a, b]. It follows
that ∣∣∣∣∫ b

a

f(t)−
∫ b

a

fn(t)

∣∣∣∣ =

∣∣∣∣∫ b

a

f(t)− fn(t)dt

∣∣∣∣ < ε

(b− a)
(b− a),

for all n > N . �

In other words, continuity, and integration are well behaved for uni-
formly convergent sequences of functions.

On the other hand, differentiability is not as well behaved. We state
without proof the Weierstraß polynomial approximation theorem.

Theorem 1.4 (Weierstraß). For any continous function f : [a, b]→ R,
there exists a sequence of polynomials pn(x) converging uniformly to f
on [a, b].

Proof. See for instance Browder [1, Theorem 7.1]. �

In other words, there are uniformly convergent sequences of differ-
entiable functions, whose limit is not differentiable.

Moreover:

Lemma 1.5. There exists a sequence of differentiable functions fn :
[0, 1] → R converging uniformly to 0, such that the sequence f ′n does
not converge to 0.

In other words, for uniformly convergent sequences of differentiable
functions, even if the limit function is differentiable, it is not necessarily
the case that the derivative of the limit is the limit of the derivatives.

Exercise 3. Prove the previous lemma.

[Hint: Consider the functions fn(x) = sin(nx)
n

.]

Proof. Consider the sequence of functions in the hint. Clearly the func-
tions are differentiable. Since

|fn(x)| = |1/n|
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the sequence converges uniformly to 0.
On the other hand, f ′n(x) = cos(nx), which does not converge to 0.

Indeed for any n > 0, f ′n(0) = 1. �

There are sequences of functions which are well behaved in all re-
spects. Recall the following definition:

Definition 1.6. A function f : (a, b) → R is analytic at x0 ∈ (a, b)
if there exists a sequence (ak)

∞
k=0 and a δ > 0 such that the sequence

of functions fn(x) =
∑n

k=0 ak(x − x0)
k converges to f(x) whenever

|x− x0| < δ.

Theorem 1.7. Consider the power series
∑∞

n=0 an(x− x0)
n. Fix

R =
1

lim sup |an|1/n

Then the series converges absolutely for |x − x0| < R, uniformly for
|x− x0| ≤ R′ < R, and diverges for |x− x0| > R.

Proof. Fix k such that
1

R
< k <

1

R′
.

By our choice of R, for n >> 0, we have |an|1/n < k. It follows that
for |x− x0| ≤ R′,

|an(x− x0)
n| =

(
|an|1/n|x− x0|

)n
< (kR′)n.

Since k was chosen so that kR′ < 1, and hence
∑∞

n=0(kR
′)n converges,

it follows from the Weierstraß M -test that
∑∞

n=0 an(x−x0)
n converges

uniformly. This also shows absolute convergence.
To show divergence when |x− x0| > R, choose

1

|x− x0|
< k <

1

R
.

From the definition of R, there are an infinite number of an such that
|an|1/n > k. For such an an,

|an(x− x0)
n| =

(
|an|1/n|x− x0|

)n
> (k|x− x0|)n > 1.

This violates the principle that the summands in a convergent series
must go to zero. �

Remark 1.8. Less can be said for |x − x0| = R. Consider the series∑∞
n=0 x

n which converges at no point where |x| = 1, and the series∑∞
n=0 x

n/n2 which converges at every point on |x| = 1.
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Remark 1.9. Using the ratio test, one can check that

R =
1

limn→∞ |an+1/an|
.

Indeed, ∣∣∣∣an+1(x− x0)
n+1

an(x− x0)n

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |x− x0|.

One can also show (although we omit a proof)

Theorem 1.10. Let
∑∞

n=0 an(x− x0)
n be a power series with positive

radius of convergence R, converging to a function f . Then
∞∑
n=1

nan(x− x0)
n−1

has the same radius of convergence, and converges to f ′.

Proof. See for example Browder [1, Theorem 4.26]. �

There is also the following result:

Theorem 1.11. Let
∑∞

n=0 an(x− x0)
n be a power series with positive

radius of convergence R, converging to a function f . Then
∞∑
n=0

an
n+ 1

(x− x0)
n+1

has the same radius of convergence, and converges to a function F such
that dF/dx = f .

Exercise 4. Prove the previous theorem. [Hint: use Theorem 1.3].

Proof. On appropriate closed discs, the partial sums

SN =
N∑
n=0

an(x− x0)
n

converge uniformly to f . Thus by Theorem 1.3,

lim
N→∞

N∑
n=0

an
n+ 1

(x− x0)
n+1 = lim

N→∞

∫ x

x0

SN(t)dt =

∫ x

x0

f(t)dt.

Thus the series converges to an anti-derivative of f on the same disc on
which the original power series converged. The radius of convergence
can not be larger due to the previous theorem. �

The references above are to a book by A. Browder [1]. All of these
results are also in the standard book below by W. Rudin [2]. I will try
to update the references to this book at some point.
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