SAMPLE FINAL EXAM EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY

MATH 3210

Monday May 5, 2014 7:30 AM - 10:00 AM ECCR 151

Name

Please answer all of the questions, and show your work. All solutions must be explained clearly to receive credit.

1	2	3	4	5	6	7	8	
10	10	10	10	10	10	10	10	Total

Date: April 29, 2014.

1 10 points

1.(a). Define a betweenness plane.

1.(b). Show that lying on the same side of a line defines an equivalence relation for points not on the line. I.e., in a betweenness plane, fix a line ℓ and let S be the set of points not lying on ℓ . For all $P, Q \in S$, define $P \sim Q$ if and only if P and Q are on the same side of ℓ . Show that \sim defines an equivalence relation on S.

1.(c). Show using the definition of a betweenness plane that S has exactly two equivalence classes.

1.(d). Fix a betweenness plane. Given parallel lines ℓ and m and points A and B that lie on the opposite side of m from ℓ ; i.e., for any point P on ℓ , A and P are on opposite sides of m, and B and P are on opposite sides of m. Prove that A and B lie on the same side of ℓ .

2. In this problem we work in a real Euclidean plane. Give a straight edge and compass construction of products and ratios of real numbers. In other words, fix a segment and set that to have length 1 so that we can define lengths in our plane. Then given two segments of length a and b respectively, construct two new segments, one of length ab and the other of length a/b. You must prove that your construction works.

In this problem we work in a Hilbert plane satisfying Dedekind's axiom.

3.(a). Define the defect δ of a triangle ΔABC .

10 points

3

3.(b). Show the defect is additive: Given a triangle $\triangle ABC$, if *D* is any point between *A* and *B* (see the figure), then $\delta(ABC) = \delta(ACD) + \delta(BCD)$.

4	
10	points

4. In a Hilbert plane, show that opposite sides of a rectangle are congruent to each other.

In this problem, we work in a Hilbert plane satisfying Dedekind's axiom.

- 5.(a). What is the definition of a limiting parallel ray?
- 5.(b). What is the definition of a hyperbolic plane?
- 5.(c). Show that a hyperbolic plane is not Euclidean?

6.(a). Define the set of points in the Poincaré model.

- 6.(b). Define the set of lines in the Poincaré model.
- **6.(c).** Define the incidence relation.
- **6.(d).** State the incidence axioms.

6.(e). Rewrite the incidence axioms for the Poincaré model in terms of conditions on circles and lines in the real Euclidean plane.

7	
10	points

7. In this problem, we work in a Hilbert plane satisfying Dedekind's axiom. Let ℓ be a line and let P be a point not on ℓ . Let \overrightarrow{PY} be a limiting parallel ray to ℓ , and let X be a point on this ray between P and Y. Show that \overrightarrow{XY} is a limiting parallel ray to ℓ through X.

8. True or false.

8 10 points

8.(a) Let p, q, r be statements. Then the statement

 $[p \implies q] \iff [(p \land \sim q) \implies (r \land \sim r)]$

may be true or false depending on whether p, q, r are true or false.

8.(b) Given an (arbitrary) angle in a real Euclidean plane, one can trisect the angle with a straight edge and compass.

8.(c) In a Hilbert plane, suppose that A * C * B and A * D * B. Then A * C * D.

8.(d) Every projective plane is a Hilbert plane.

8.(e) There exists a real hyperbolic plane that is not equal to the Poincaré model.

8.(f) There exists a Hilbert plane satisfying Aristotles's axiom such that the angle sum of a triangle is greater than 180° .

8.(g) A Hilbert plane that admits a rectangle is semi-Euclidean.

8.(h) Given a Hilbert plane satisfying Dedekind's axiom, if one Saccheri quadrilateral has summit angles of 90°, then so do all Sachheri quadrilaterals.

8.(i) The summit angles of a Lambert quadrilateral are congruent.

8.(j) In a Hilbert plane with no rectangles, given a line L and a point P not on L there are an infinite number of lines through P that are parallel to L.